Flag Integral Calculus> i’m not sure ‘bout the answer although i ...
question mark

i’m not sure ‘bout the answer although i slved it so please do helh me ….integration of sin2x/(1+sinx)(2+six)*dx

Swagata , 7 Years ago
Grade 12
anser 1 Answers
Vikas TU

Last Activity: 7 Years ago

Dear Student,
Given integral:
 integral (sin(2 x))/((sin(x) + 1) (sin(x) + 2)) dx
Using double angle formula sin(2 x) = 2 sin(x) cos(x):
  =integral (2 sin(x) cos(x))/((sin(x) + 1) (sin(x) + 2)) dx
Rewrite (2 sin(x) cos(x))/((sin(x) + 1) (sin(x) + 2)) as (2 sin(x) cos(x))/(2 + 3 sin(x) + sin^2(x)):
  =integral (2 sin(x) cos(x))/(2 + 3 sin(x) + sin^2(x)) dx
For the integrand (2 sin(x) cos(x))/(2 + 3 sin(x) + sin^2(x)), substitute u = sin(x) and  du = cos(x)  dx:
  =integral (2 u)/(u^2 + 3 u + 2) du
Factor out constants:
  =2 integral u/(u^2 + 3 u + 2) du
Rewrite the integrand u/(u^2 + 3 u + 2) as (2 u + 3)/(2 (u^2 + 3u + 2)) - 3/(2 (u^2 + 3 u + 2)):
  =2 integral ((2 u + 3)/(2 (u^2 + 3 u + 2)) - 3/(2 (u^2 + 3 u + 2))) du
Integrate the sum term by term and factor out constants:
  =integral (2 u + 3)/(u^2 + 3 u + 2) du - 3 integral 1/(u^2 + 3 u + 2) du
For the integrand (2 u + 3)/(u^2 + 3 u + 2), substitute s = u^2 + 3 u + 2 and  ds = (2 u + 3)  du:
  =integral 1/s ds - 3 integral 1/(u^2 + 3 u + 2) du
The integral of 1/s is log(s):
  log(s) - 3 integral 1/(u^2 + 3 u + 2) du
For the integrand 1/(u^2 + 3 u + 2), complete the square:
  =log(s) - 3 integral 1/((u + 3/2)^2 - 1/4) du
For the integrand 1/((u + 3/2)^2 - 1/4), substitute p = u + 3/2 and  dp =du:
  =log(s) - 3 integral 1/(p^2 - 1/4) dp
Factor -1/4 from the denominator:
  =log(s) - 3 integral 4/(4 p^2 - 1) dp
Factor out constants:
  =log(s) - 12 integral 1/(4 p^2 - 1) dp
Factor -1 from the denominator:
  =log(s) + 12 integral 1/(1 - 4 p^2) dp
For the integrand 1/(1 - 4 p^2), substitute w = 2 p and  dw = 2  dp:
  =log(s) + 6 integral 1/(1 - w^2) dw
The integral of 1/(1 - w^2) is tanh^(-1)(w):
  =log(s) + 6 tanh^(-1)(w) + constant
Substitute back for w = 2 p:
  =6 tanh^(-1)(2 p) + log(s) + constant
Substitute back for p = u + 3/2:
  =log(s) + 6 tanh^(-1)(2 u + 3) + constant
Substitute back for s = u^2 + 3 u + 2:
  =log(u^2 + 3 u + 2) + 6 tanh^(-1)(2 u + 3) + c
Substitute back for u = sin(x):
  =log(sin^2(x) + 3 sin(x) + 2) + 6 tanh^(-1)(2 sin(x) + 3) + c
Which is equal to:
Ans=4 log(sin(x) + 2) - 4 log(sin(x/2) + cos(x/2)) + c
Cheers!!
Regards,
Vikas (B. Tech. 4th year
Thapar University)

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...