Flag Integral Calculus> I am unable to solve the following questi...
question mark

I am unable to solve the following questions in integration. Please help.

Anika Dogra , 3 Years ago
Grade 12
anser 1 Answers
Abhishek Singh

Last Activity: 3 Years ago

This can be done using L’Hospital rule [here both numerator and denominator tend to 0 ]
Now numerator can be differentiated using Leibnitz rule 
\frac{\mathrm{d} }{\mathrm{d} x}\int_{0}^{x^2}sin(\sqrt{t})dt = \frac{\mathrm{d} }{\mathrm{d} x}(x^2).sin(\sqrt{x^2}) - 0\frac{\mathrm{d} }{\mathrm{d} x}\int_{0}^{x^2}sin(\sqrt{t})dt = \frac{\mathrm{d} }{\mathrm{d} x}(x^2).sin(\sqrt{x^2}) - 0 = 2x.sin(x)
 
Hence \begin{align*} \lim_{x\rightarrow 0} \frac{\int_{0}^{x^2} sin(\sqrt{t})dt}{x^3} &=\lim_{x\rightarrow 0} \frac{2x.sin(x)}{3x^2} \\ &= \lim_{x\rightarrow 0} \frac{2}{3}*\frac{sin(x)}{x}\\ &= 2/3 \end{align*}
 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...