Learn to Create a Robotic Device Using Arduino in the Free Webinar. Register Now
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-1023-196
+91-120-4616500
CART 0
Use Coupon: CART20 and get 20% off on all online Study Material
Welcome User
OR
LOGIN
Complete Your Registration (Step 2 of 2 )
Free webinar on Robotics (Block Chain) Learn to create a Robotic Device Using Arduino
30th Jan @ 5:00PM for Grade 1 to 10
How to integrate ∫(cos2x-cos2a)/(cosx-cosa)dx where a is constant How to integrate ∫(cos2x-cos2a)/(cosx-cosa)dx where a is constant
∫(cos 2x - cos 2a) / (cos x - cos a) dx = ∫((2cos^2 x - 1) - (2cos^2 a - 1)) / (cos x - cos a) dx = ∫(2 cos^2 x - 2 cos^2 a) / (cos x - cos a) dx = ∫[2(cos x - cos a)(cos x + cos a)] / (cos x - cos a) dx = ∫2(cos x + cos a) dx = 2 sin x + x cos a + c.
Hsbs ∫(cos 2x - cos 2a) / (cos x - cos a) dx = ∫((2cos^2 x - 1) - (2cos^2 a - 1)) / (cos x - cos a) dx = ∫(2 cos^2 x - 2 cos^2 a) / (cos x - cos a) dx = ∫[2(cos x - cos a)(cos x + cos a)] / (cos x - cos a) dx = ∫2(cos x + cos a) dx = 2 sin x + 2x cos a + c
= 2 sin x + 2x cos a + c= ∫2(cos x + cos a) dx = ∫[2(cos x - cos a)(cos x + cos a)] / (cos x - cos a) dx = ∫(2 cos^2 x - 2 cos^2 a) / (cos x - cos a) dx ∫((2cos^2 x - 1) - (2cos^2 a - 1)) / (cos x - cos a) dx
Post Question
Dear , Preparing for entrance exams? Register yourself for the free demo class from askiitians.
points won -