Guest

How to integrate ∫(cos2x-cos2a)/(cosx-cosa)dx where a is constant

How to integrate ∫(cos2x-cos2a)/(cosx-cosa)dx where a is constant

Grade:12

3 Answers

Arun
25758 Points
4 years ago
∫(cos 2x - cos 2a) / (cos x - cos a) dx 
= ∫((2cos^2 x - 1) - (2cos^2 a - 1)) / (cos x - cos a) dx 
= ∫(2 cos^2 x - 2 cos^2 a) / (cos x - cos a) dx 
= ∫[2(cos x - cos a)(cos x + cos a)] / (cos x - cos a) dx 
= ∫2(cos x + cos a) dx 
= 2 sin x + x cos a + c.
Rakshit Puri
15 Points
4 years ago
Hsbs
 
∫(cos 2x - cos 2a) / (cos x - cos a) dx 
= ∫((2cos^2 x - 1) - (2cos^2 a - 1)) / (cos x - cos a) dx 
= ∫(2 cos^2 x - 2 cos^2 a) / (cos x - cos a) dx 
= ∫[2(cos x - cos a)(cos x + cos a)] / (cos x - cos a) dx 
= ∫2(cos x + cos a) dx 
= 2 sin x + 2x cos a + c
ankit singh
askIITians Faculty 614 Points
2 years ago
= 2 sin x + 2x cos a + c= ∫2(cos x + cos a) dx = ∫[2(cos x - cos a)(cos x + cos a)] / (cos x - cos a) dx = ∫(2 cos^2 x - 2 cos^2 a) / (cos x - cos a) dx ∫((2cos^2 x - 1) - (2cos^2 a - 1)) / (cos x - cos a) dx 

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free