MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 12
        
Evaluate  the given question of indefinite integral
limit 0 to pi by 2 dx by 1 +√tanx
 
one year ago

Answers : (2)

Himanshu
14 Points
							
 
 
Let I be the answer
Using the idendity 
^{\int_{0}^{pi/2}}tanx=^{\int_{0}^{pi/2}}tan(pi/2-x)=^{\int_{0}^{pi/2}}cotx
so
 
^{\int_{0}^{pi/2}}2dx/(1+\sqrt{tanx})=^{\int_{0}^{pi/2}}2dx/(1+\sqrt{cotx})=^{\int_{0}^{pi/2}}2dx/(1+\sqrt{1/tanx})=^{\int_{0}^{pi/2}}2\sqrt{tanx}dx/(1+\sqrt{tanx})
I=^{\int_{0}^{pi/2}}2dx/(1+\sqrt{tanx})---eq 1
I=^{\int_{0}^{pi/2}}2\sqrt{tanx}dx/(1+\sqrt{tanx})---eq 2
Adding eq 1 and eq 2
 
2I=^{\int_{0}^{pi/2}}2dx/(1+\sqrt{tanx})+
2\sqrt{tanx}dx/(1+\sqrt{tanx})
2I=
^{\int_{0}^{pi/2}}2dx(1+\sqrt{tanx})/(1+\sqrt{tanx})
2I=^{\int_{0}^{pi/2}}2dx
I=^{\int_{0}^{pi/2}}dx
I=pi/2
one year ago
Aditya Gupta
1696 Points
							
I= ∫dx/(1+√tanx)
Now replace f(x) by f(a+b-x)
I= ∫√tanxdx/(1+√tanx)
Adding we get
2I= ∫dx= π/2
So I= π/4.
one year ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 51 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details