Flag Integral Calculus> Evaluate the given question of indefinite...
question mark

Evaluate the given question of indefinite integral
limit 0 to pi by 2 dx by 1 +√tanx

Mehtab , 6 Years ago
Grade 12
anser 2 Answers
Himanshu

Last Activity: 6 Years ago

 
 
Let I be the answer
Using the idendity 
^{\int_{0}^{pi/2}}tanx=^{\int_{0}^{pi/2}}tan(pi/2-x)=^{\int_{0}^{pi/2}}cotx
so
 
^{\int_{0}^{pi/2}}2dx/(1+\sqrt{tanx})=^{\int_{0}^{pi/2}}2dx/(1+\sqrt{cotx})=^{\int_{0}^{pi/2}}2dx/(1+\sqrt{1/tanx})=^{\int_{0}^{pi/2}}2\sqrt{tanx}dx/(1+\sqrt{tanx})
I=^{\int_{0}^{pi/2}}2dx/(1+\sqrt{tanx})---eq 1
I=^{\int_{0}^{pi/2}}2\sqrt{tanx}dx/(1+\sqrt{tanx})---eq 2
Adding eq 1 and eq 2
 
2I=^{\int_{0}^{pi/2}}2dx/(1+\sqrt{tanx})+
2\sqrt{tanx}dx/(1+\sqrt{tanx})
2I=
^{\int_{0}^{pi/2}}2dx(1+\sqrt{tanx})/(1+\sqrt{tanx})
2I=^{\int_{0}^{pi/2}}2dx
I=^{\int_{0}^{pi/2}}dx
I=pi/2

Aditya Gupta

Last Activity: 6 Years ago

I= ∫dx/(1+√tanx)
Now replace f(x) by f(a+b-x)
I= ∫√tanxdx/(1+√tanx)
Adding we get
2I= ∫dx= π/2
So I= π/4.

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free