Flag Integral Calculus> Evaluate the given question of indefinite...
question mark

Evaluate the given question of indefinite integral
limit 0 to pi by 2 dx by 1 +√tanx

Mehtab , 7 Years ago
Grade 12
anser 2 Answers
Himanshu
 
 
Let I be the answer
Using the idendity 
^{\int_{0}^{pi/2}}tanx=^{\int_{0}^{pi/2}}tan(pi/2-x)=^{\int_{0}^{pi/2}}cotx
so
 
^{\int_{0}^{pi/2}}2dx/(1+\sqrt{tanx})=^{\int_{0}^{pi/2}}2dx/(1+\sqrt{cotx})=^{\int_{0}^{pi/2}}2dx/(1+\sqrt{1/tanx})=^{\int_{0}^{pi/2}}2\sqrt{tanx}dx/(1+\sqrt{tanx})
I=^{\int_{0}^{pi/2}}2dx/(1+\sqrt{tanx})---eq 1
I=^{\int_{0}^{pi/2}}2\sqrt{tanx}dx/(1+\sqrt{tanx})---eq 2
Adding eq 1 and eq 2
 
2I=^{\int_{0}^{pi/2}}2dx/(1+\sqrt{tanx})+
2\sqrt{tanx}dx/(1+\sqrt{tanx})
2I=
^{\int_{0}^{pi/2}}2dx(1+\sqrt{tanx})/(1+\sqrt{tanx})
2I=^{\int_{0}^{pi/2}}2dx
I=^{\int_{0}^{pi/2}}dx
I=pi/2
Last Activity: 7 Years ago
Aditya Gupta
I= ∫dx/(1+√tanx)
Now replace f(x) by f(a+b-x)
I= ∫√tanxdx/(1+√tanx)
Adding we get
2I= ∫dx= π/2
So I= π/4.
Last Activity: 7 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments