Last Activity: 11 Years ago
∫xsinx dx = x∫sinx - ∫d/dx(x)(∫sinxdx) dx .........(taking x as first function and sinx as second);
= x(-cosx) - ∫d/dx(x) (-cosx) dx
= -xcosx + ∫cosx dx
= -xcosx + sinx + C
hence ∫xsinx dx = -xcosx + sinx + C
or you can write
∫xsinx dx = Im ∫x e^(ix) dx
= Im (x∫e^(ix) dx - ∫d/dx(x) ∫e^(ix)dx dx)
= Im (xe^(ix)/i - ∫e^(ix)/i dx)
= Im (-ixe^(ix) + e^(ix)/i)
= Im (-ixe^(ix) - ie^(ix))
= Im (-ie^(ix) (x-1))
= Im (-i(cosx + isinx)(x-1))
= Im ((x-1)sinx -i(x-1)cosx)
= (x-1)sinx
Prepraring for the competition made easy just by live online class.
Full Live Access
Study Material
Live Doubts Solving
Daily Class Assignments
Get your questions answered by the expert for free
Last Activity: 2 Years ago
Last Activity: 3 Years ago