#### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.

Click to Chat

1800-1023-196

+91 7353221155

CART 0

• 0
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

# {(2cosx+3)/(2+3cosx)^2} dx

## 2 Answers

8 years ago

Solution: Let I = ∫ 3 + 2 cos x / (2+ 3 cos x)2 dx

Multiplying Nr. & Dr. by cosec2x

=> I = int {{(3cosec^{2}x+ 2cot x cosec x) } / (2cosec x +3cot x)^2  }dx

= - int {{(-3cosec^{2}x- 2cot x cosec x) } / (2cosec x +3cot x)^2  }dx

Let us consider 2cosec x +3cot x=t

then    dt = (-3cosec^{2}x- 2cot x cosec x).dx

=int (dt / t^2)

integrate it then we get

={1} / {(2cosec x +3cot x)}

={sin x}  / {2+3cos x} +c

8 years ago

given ∫ {(2cosx+3)/(2+3cosx)^2} dx

I =∫{(2cosx +3)/(2+3cosx)^2} dx

let multiplying N.R and D.R  with cosec^2 x

then we get

I = - ∫ {(-2cosec x.cotx - 3cosec^2 x)/(2cosecx+3cotx)^2}.dx

let us consider t=2cosecx+3cotx

then dt =( -2cosec x.cotx - 3cosec^2 x ).dx

= -∫-(1/t^2) => 1/t  => 1/(2cosecx+3cotx.cotx)

={(sinx) /(2+3cosx)}

## ASK QUESTION

Get your questions answered by the expert for free