given ∫ {(2cosx+3)/(2+3cosx)^2} dx
I =∫{(2cosx +3)/(2+3cosx)^2} dx
let multiplying N.R and D.R with cosec^2 x
then we get
I = - ∫ {(-2cosec x.cotx - 3cosec^2 x)/(2cosecx+3cotx)^2}.dx
let us consider t=2cosecx+3cotx
then dt =( -2cosec x.cotx - 3cosec^2 x ).dx
= -∫-(1/t^2) => 1/t => 1/(2cosecx+3cotx.cotx)
={(sinx) /(2+3cosx)}