Flag Integral Calculus> Difficult Integral...
question mark


Hello there:

I have been trying to do the following integral but have not been successful. Could someone please lend a hand?

1 / (sin(x) + sec(x))

Thanks a ton!
Manish

Manish Prasad , 15 Years ago
Grade
anser 2 Answers
askiitianexpert arulmani

Last Activity: 15 Years ago

∫dx/(sin x+sec x)=∫dx/(sin x + (1/cos x))=∫cos x dx /(1+sin x cos x)

Multiplying by 2, we get = ∫2 cos x dx / (2 + 2 sin x cos x) 

2 cos x dx can be substituted with (cos x + sin x) + (cos x - sin x) and

2 + 2 sin x cos x can be substituted with either (3 - (sin x - cos x)2) or (1 + (sin x + cos x)2)

Hence we get,

∫2 cos x dx / (2 + 2 sin x cos x) = ∫ (cos x + sin x) dx / (3 - (sin x - cos x)2) + ∫(cos x - sin x) dx / (1 + (sin x + cos x)2)

FIRST PART OF THE INTEGRAL

∫ (cos x + sin x) dx / (3 - (sin x - cos x)2)

Integrate by substitution, put y = sin x - cos x

then dy = (cos x +sin x) dx,

and we get ∫ dy / (3 - y2) = (1/(2*√3)) [ ∫ dy / (√3 + y) +  ∫ dy / (√3 - y) ]

=> (1/(2*√3)) [ log(√3 + y) -  log(√3 - y) ] + C

replacing y with its original value, we get

=> (1/(2*√3)) [ log(√3 + (sin x - cos x)) -  log(√3 - (sin x - cos x)) ] + C

SECOND PART OF THE INTEGRAL

∫(cos x - sin x) dx / (1 + (sin x + cos x)2)

Integrate by substitution, put z = sin x + cos x

then dz = (cos x - sin x) dx,

and we get ∫dz / (1 + (z)2)

Let z = tan Θ, then dz = sec2Θ dΘ

∫dz / (1 + (z)2) = ∫sec2Θ dΘ / (1 + (tan Θ)2) = ∫sec2Θ dΘ / sec2Θ = ∫dΘ = Θ = tan-1z + C

replacing z with its original value, we get, 

=> tan-1(sin x + cos x)+ C

FINAL ANSWER

Now adding the first and second parts, we get the result as

=> (1/(2*√3)) [ log(√3 + (sin x - cos x)) -  log(√3 - (sin x - cos x)) ] + tan-1(sin x + cos x)+ C


Anurag Kishore

Last Activity: 15 Years ago

Hi, the integral is

 

∫ cosx dx / (sinx + cosx)

= 1/2 [2 cosx dx /(sinx + cosx)

= 1/2 [(cosx + sinx) + (cosx - sinx) dx] / (sinx + cosx)

Now divide individually

put sinx + cosx = t and integrate

 

Final answer

 

x/2  +  1/2  log I sinx + cosx I  + c

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free