Flag Integral Calculus> result
question mark

tanx.sec2x.dx=

shubham koshal , 12 Years ago
Grade
anser 1 Answers
Rinkoo Gupta

Last Activity: 10 Years ago

integral tanx.sec2x dx
=integral sinx/(cosx.cos2x) dx
=integral sinx/cosx(2cos^2x-1) dx
put cosx =t
on diff. w.r. to x
-sinx dx=dt
=>integral (-dt)/t(2t^2-1)
Using Partial fraction we get
integral (1/t -1/root2(t.root2.-1) -1/root2.(troot2+1))
=logt-1/2loh(troot2-1)-1/2 .log(troot2+1)
=log cosx-1/2log(2cos^2x-1)
=logcosx -1/2 logcos2x
=log (cosx/ root of cos2x)

Thanks & Regards
Rinkoo Gupta
AskIITians Faculty

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...