Flag Integral Calculus> integration by partial fraction...
question mark

∫{[1-cosx]/[cosx(1+cosx)]}dx∫{[1+sinx]/[sinx(1+cosx)]}dx∫[sinx/sin4x]dx

rahul prajapati , 12 Years ago
Grade 12th Pass
anser 2 Answers
Rinkoo Gupta

Last Activity: 10 Years ago

Dear Student,

Pls type one question in one link.

?(1-cosx)dx/cosx(1+cosx)

=?dx/cosx(1+cosx) - ?dx/(1+cosx)

=?{(1/cosx)-1/(1+cosx)}dx -?dx/(1+cosx)

=?dx/cosx -2?dx/(1+cosx)

=?secxdx-2?dx/2cos^(x/2)

=?ecxdx-?sec^2(x/2)dx

=logIsecx+tanxI-2tan(x/2)+C

Thanks & Regards

Rinkoo Gupta

AskIITians Faculty

Rishi Sharma

Last Activity: 4 Years ago

Dear Student,
Please find below the solution to your problem.

(A)
I=integ. of (1-cos x).dx/cos x.(1+cos x)
I=integ. of (1–1+2sin^2 x/2).dx/cos x.(1+2.cos^2 x/2 -1).
I=integ. of ( tan^2 x/2).dx/ cos x
I= integ.of (tan^2 x/2).(1+tan^2 x/2).dx /(1-tan^2 x/2).
I = integ. of (tan^2 x/2).sec^2 x/2.dx/(1-tan^2 x/2)
Let. p = tan x/2
dp = 1/2.sec^2 x/2.dx
or. 2.dp=sec ^2 x/2.dx.
I = integ.of 2.p^2.dp/(1-p^2)
I = integ.of -2(1-p^2–1).dp/(1-p^2)
I=integ.of -2[ 1. -1/(1-p^2)].dp
I= integ.of [-2 +2. 1/(1-p^2)].dp
I = -2p +2.1/2{log(p+1)-log(1-p)} + C.
I=-2.tan x/2+log(1+tan x/2)-log(1-tan x/2)+C.

(B)

645-1360_01010101.PNG

(C)

645-1887_1234421.GIF

Thanks and Regards

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...