Flag Integral Calculus> Find the value of :...
question mark

[i] ∫(x+sin x) / (1+ cos x)[ii] ∫cos -1( ( 1-x2)/( 1+x2) ) [ why can't we put x=tan θ and dx=sec2 θ ->i'm not getting the answer by this way ][iii] ∫sin -1√(x /a+x)

Jithin Sarma , 15 Years ago
Grade 12
anser 1 Answers
Pratham Ashish

Last Activity: 15 Years ago

hi,

i)    ∫(x+sin x) / (1+ cos x)  =

  =    ∫sin x / (1+ cos x)dx + ∫x / (1+ cos x)dx

  =  - ln ( 1+ cos x )   +  ∫x / (1+ 2 cos^2  x/2  -1) dx

 =  - ln ( 1+ cos x )   +  1/2 ∫x sec^2 x/2 dx 

 =  - ln ( 1+ cos x )   +  1/2 [  2x tan x/2  -  2∫ tan x/2 dx ]

 = - ln ( 1+ cos x )   +  1/2 [  2x tan x/2   + 4  ln cos x/2]

 = - ln ( 1+ cos x )   +  x tan x/2  + 2  ln cos x/2

 

ii)   ∫cos -1( ( 1-x2)/( 1+x2) )               put x=tan t  and dx= sec2 t dt

       =   ∫cos -1( ( 1  - tan^2 t ) /( 1 + tan ^2 t )   dt

       =  ∫cos -1( cos ^2  t  -  sin^2 t  ) / (  cos ^2  t  +  sin^2 t )   sec2 t  dt

       =  ∫cos -1(  cos 2t )  sec2t  dt

       =   ∫ 2t  sec2 t  dt

      =  2 [ t tant -   ∫   tant dt ]

       =  2 [ t tant  + ln cost ]

      = 2 [ x. tan^-1 x  + ln cos  ( tan^-1 x ) ]

      =  2 [ x. tan^-1 x   + ln  cos { cos^-1  1/ √1+ x^2 }

       =  2 [ x. tan^-1 x   + ln  ( 1/ √1+ x^2) ]

 

iii)   ∫sin -1√(x /a+x)

     put  x = ay , dx = a dy

    = a  ∫sin -1√ y/1+y   dy           , put  y = tan ^2 t  ,  dy = 2 tant sec^2 t dt

    =  a  ∫sin -1√  tan ^2 t / 1+  tan ^2 t )  2 tant sec^2 t dt

    =  2 a  ∫sin -1√  sin^2 t   . sin t / cos^3 t  dt

   =  2 a  ∫  t .  sin t / cos^3 t  dt

   =   2a   [   1/2   t . 1/ cos^2 t  -  1/2  ∫ 1/ cos^2 t dt ]

   =   2a   [   1/2   t . 1/ cos^2 t  -  1/2 tan t  ]

  =   a  t . 1/ cos^2 t  -  a  tan t 

 = a  tan^-1 √ x/a .  1/ cos^2 ( tan^-1 √ x/a )    -  a  √ x/a  

 

 

 

 

 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...