Flag Integral Calculus> integration prev doubt...
question mark

Plz solve this integration..............

∫ ((√((x)^2+x+1))/(x+1)) dx

Sir in this,

x2+x+1 = (x+1)2 - x

where x+1 is replaced by t

then we get

((v((t)^2-(t-1)))/t) dt right; then how to proceed sir.....

where 'v' represents sq.rt

Moni RS , 16 Years ago
Grade 11
anser 1 Answers
Jitender Singh

Last Activity: 11 Years ago

Ans:
I = \int \frac{\sqrt{x^{2}+x+1}}{x+1}dx
I = \int \frac{\sqrt{(x+\frac{1}{2})^{2}+\frac{3}{4}}}{x+1}dx
u = x + \frac{1}{2}
du = dx
I = \int \frac{\sqrt{(u)^{2}+\frac{3}{4}}}{u+\frac{1}{2}}du
u = \frac{\sqrt{3}}{2}tan(s)
du = \frac{\sqrt{3}}{2}sec^{2}(s).ds
I = \frac{3}{4}\int \frac{sec^{3}(s)}{\frac{\sqrt{3}}{2}tan(s)+\frac{1}{2}}ds
t = tan (\frac{s}{2})
dt = \frac{1}{2}sec^{2} (\frac{s}{2}).ds
I = 3\int \frac{(p^{2}+1)^{2}}{(p^{2}-1)^{2}.(-p^{2}+2\sqrt{3}p+1)}dp
Use simply partial fraction rule here, you will get
I = \sqrt{x^{2}+x+1}-log(2 \sqrt{x^{2}+x+1}-(x-1))+log(x+1)-\frac{1}{2}sinh^{-1}(\frac{2x+1}{\sqrt{3}}) + c
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments