Flag Integral Calculus> indefinite integration...
question mark

int of (a)2^x*e^x dx, int of (b)4*cosx/2*cosx*sin21x/2 dx, int of (c)cos2x-cos2y/cosx-cosy dx, int of (d)[sinx*sin(y-x)+sin^2(y/2-x)] dx, int of (e)sin2x+sin5x-sin3x/cosx+1-2sin^2x dx, int of (f)cos8x-cos7x/1+2cos5x dx

mustafa bandook wala , 15 Years ago
Grade 12
anser 1 Answers
Ramesh V

Last Activity: 15 Years ago

using the  relations
Sum / Difference of Trigonometric Functions Formulas.

   1.  sin A + sin B = 2 sin [ (A + B) / 2 ] cos [ (A - B) / 2 ]

   2. sin A - sin B = 2 cos [ (A + B) / 2 ] sin [ (A - B) / 2 ]

   3. cos A + cos B = 2 cos [ (A + B) / 2 ] cos [ (A - B) / 2 ]

    4.  cos A - cos B = - 2 sin [ (A + B) / 2 ] sin [ (A - B) / 2 ]


a) let A= 2x*ex.dx

integrating by parts gives

A = 2x*ex - ln 2 A

so A = 2x*ex / ln(2e) + C   where C is constant

b) Question not clear

c)  cos2x-cos2y/cosx-cosy dx

   = (2 cos2x-1-2cos2y+1)/(cosx-cosy) dx

   = 2 (cosx+cosy) dx


    = 2 (sinx+x.cosy)+ C   where C is constant


d) [sinx*sin(y-x)+sin^2(y/2-x)] dx

  = using relation 4 stated above , we can write as

   = 1/2*( cos(2x-y) - cos y ) + 1/2* (1-cos(2x-y) ) dx

   here cos 2x = 1 - 2sin2x

  so we have finally

  = 1/2 * (1-cosy).dx

  = 1/2 * (1-cosy) + C where C is constant


e) (sin2x+sin5x-sin3x)/(cosx+1-2sin2x) dx


  here here cos 2x = 1 - 2sin2x

   = (sin2x+sin5x-sin3x)/(cosx+cos 4x) dx

   using relations 1 and 3 we have

   =  (-2cox 5x/2. sin x/2+2 sin5x/2 cos5x/2) / (2.cos 5x/2.cos3x/2) dx


  =  ( sin x/2 - sin x/2) / (cos3x/2) dx

  =  (2cox 3x/2. sin x) / (cos3x/2) dx

  =  (2sin x) dx

  =  - 2 cos x  + C where C is constant


f)  (cos8x-cos7x)/(1+2cos5x) dx

   Adding +cos 2x and - cos 2x to numerator gives

         ={(cos8x+cos 2x)-(cos7x+cos 2x)}/(1+2cos5x) dx

       = {(2cos5xcos 3x - (cos7x+cos 2x)}/(1+2cos5x) dx

       again adding +cos 3x and - cos 3x to numerator gives


       = {(2cos5xcos 3x + cos 3x - (cos7x+cos 2x+cos 3x)}/(1+2cos5x) dx


      ={(2cos5xcos 3x + cos 3x - (2 cos 5x.cos 2x+cos 2x)}/(1+2cos5x) dx

      ={(2cos5x+1)cos 3x - (2 cos 5x+1).cos 2x}/(1+2cos5x) dx

     =(cos 3x  - cos 2x) dx

Answer is 1/3*sin 3x - 1/2*sin 2x +C     where C is constant

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...