Ramesh V
Last Activity: 15 Years ago
using the relations
Sum / Difference of Trigonometric Functions Formulas.
1. sin A + sin B = 2 sin [ (A + B) / 2 ] cos [ (A - B) / 2 ]
2. sin A - sin B = 2 cos [ (A + B) / 2 ] sin [ (A - B) / 2 ]
3. cos A + cos B = 2 cos [ (A + B) / 2 ] cos [ (A - B) / 2 ]
4. cos A - cos B = - 2 sin [ (A + B) / 2 ] sin [ (A - B) / 2 ]
a) let A= 2x*ex.dx
integrating by parts gives
A = 2x*ex - ln 2 A
so A = 2x*ex / ln(2e) + C where C is constant
b) Question not clear
c) cos2x-cos2y/cosx-cosy dx
= (2 cos2x-1-2cos2y+1)/(cosx-cosy) dx
= 2 (cosx+cosy) dx
= 2 (sinx+x.cosy)+ C where C is constant
d) [sinx*sin(y-x)+sin^2(y/2-x)] dx
= using relation 4 stated above , we can write as
= 1/2*( cos(2x-y) - cos y ) + 1/2* (1-cos(2x-y) ) dx
here cos 2x = 1 - 2sin2x
so we have finally
= 1/2 * (1-cosy).dx
= 1/2 * (1-cosy) + C where C is constant
e) (sin2x+sin5x-sin3x)/(cosx+1-2sin2x) dx
here here cos 2x = 1 - 2sin2x
= (sin2x+sin5x-sin3x)/(cosx+cos 4x) dx
using relations 1 and 3 we have
= (-2cox 5x/2. sin x/2+2 sin5x/2 cos5x/2) / (2.cos 5x/2.cos3x/2) dx
= ( sin x/2 - sin x/2) / (cos3x/2) dx
= (2cox 3x/2. sin x) / (cos3x/2) dx
= (2sin x) dx
= - 2 cos x + C where C is constant
f) (cos8x-cos7x)/(1+2cos5x) dx
Adding +cos 2x and - cos 2x to numerator gives
={(cos8x+cos 2x)-(cos7x+cos 2x)}/(1+2cos5x) dx
= {(2cos5xcos 3x - (cos7x+cos 2x)}/(1+2cos5x) dx
again adding +cos 3x and - cos 3x to numerator gives
= {(2cos5xcos 3x + cos 3x - (cos7x+cos 2x+cos 3x)}/(1+2cos5x) dx
={(2cos5xcos 3x + cos 3x - (2 cos 5x.cos 2x+cos 2x)}/(1+2cos5x) dx
={(2cos5x+1)cos 3x - (2 cos 5x+1).cos 2x}/(1+2cos5x) dx
=(cos 3x - cos 2x) dx
Answer is 1/3*sin 3x - 1/2*sin 2x +C where C is constant