Flag Integral Calculus> solving the sum...
question mark

Q1)? x / (x-1)(x^2 + 4)dxQ 2)? x^2 + 2x + 3 / whole root over x^2 + 1Q 3)?e^ax cos bx dxQ 4)?dx / 1+3e^x + 2e^2xdxQ 5)?x^3 + 1 / x^3 – 1dxQ 6)?x^2 / x^4 – x^2 – 12 dx

ayush rajoria , 15 Years ago
Grade 12
anser 1 Answers
Ramesh V

Last Activity: 15 Years ago

(1) x / (x-1)(x^2 + 4)dx

integral  [1/5.(x-1) -  2x/10(x2+4)  + 4/5(x2+4)] .dx

solution is = (ln(x-1)) /5 - (ln(x2+4)) /10 +2/5.tan-1(x/2) +C where C is constant

(2) x^2 + 2x + 3 / whole root over x^2 + 1

integral  [ (x2+1-1)/(x2+1)1/2 +  2x/(x2+1)1/2  + 3/((x2+4)1/2)] .dx

integral  [ (x2+1)1/2 +  2x/(x2+1)1/2  + 2/((x2+4)1/2)] .dx

solution. is = [x.(x2+1)1/2]/2 + 2.(x2+1)1/2 + 5/2*ln(x+(x2+1)1/2 ) +C where C is constant

(3) (e^ax cos bx) dx

integral P = eax.cos(bx). dx

integrate by parts with M=eax     dm = aeax.dx

P =1/b*eax.sin(bx) - a/b* [ integral of eax.sin(bx). dx ]

again integrate by parts gives

integral of  eax.sin(bx). dx = -1/b*eax.cos(bx) + a/b*P

Putting into above expression gives

P = 1/b*eax.sin(bx) +2/b2*eax.cos(bx) - (a/b)2*P

P = b2 / (a2+b2) .eax.(sin bx /b + acos(bx) /b2 ) + C

P = eax / (a2+b2)1/2.(cos(bx) - tan-1(b/a) ) + C where C is constant

 

(4) dx / (1+3e^x + 2e^2x)  .dx

integral  [1/(1+3ex +2e2x)] .dx

[1/(1+2e2x)*(ex+1)] .dx

2.dx/(1+2e2x)  - dx / (ex+1)

put  1+2e2x =t and ex+1 = k

dt / (t-1)  - dt /t + dk / k - dk/(k-1)

ln(2ex) - ln(1+2ex) +ln(1+ex) - ln(ex) +C

final solution is :  ln(2.(1+2ex)/(1+ex)) +C where C is constant

 

(5) (x^3 + 1) / (x^3 – 1) .dx

also can be written as : 1 +( 2/(x3-1)) .dx

we know that : x3-1 = (x-1)(x2+x+1)

let P = integral of   (1/(x3-1)) .dx

hence, by partial fractions:

1/(x³-1) = A/(x-1) + (Bx+C)/(x²+x+1); hence,
1 = A(x²+x+1) + (Bx+C)(x-1) =
(Ax² + Ax + A) + (Bx² + (C-B)x - C) =
(A+B)x² + (A+C-B)x + (A-C); hence,
A + B = 0, A + C - B = 0, and A - C = 1; hence,
A = - B, C = B - A = -2A, and A -(- 2A) = 1; hence,
A = 1/3, B = -1/3, and C = -2/3

Hence,

P= ∫(1/(x³-1))dx = ∫[(1/3)/(x-1)] + [((-1/3)x-2/3)/(x²+x+1)]dx
   = ∫[(1/3)/(x-1)]dx + ∫[((-1/3)x-2/3)/(x²+x+1)]dx
   = (1/3)∫[1/(x-1)]dx + (-1/3)∫[(x+2)/(x²+x+1)]dx
   = (1/3)∫[1/(x-1)]d(x-1) + (-1/3)∫[(x+(1/2)+(3/2))/((x+(1/2))²+(√3/2)²) dx
   = [(1/3)ln|x-1|  - (1/3)∫[(x+(1/2)+(3/2))/((x+(1/2))²+(√3/2²) + C
   = [(1/3)ln|x-1|  - (1/3)∫[(x+½)/((x+½)²+(√3/2)²]dx - (1/3)(3/2)∫[1/((x+½)²+(√3/2)²)]dx
   = (1/3)ln|x-1|  - (1/6)ln|(x+½)²+(√3/2)²| - (½)[(1/(√3/2))arctan((x+½)/(√3/2))]  + C
   = (1/3)ln|x-1|  - (1/6)ln((x+½)²+(√3/2)²) - (1/√3)arctan((2x+1)/√3) + C

so final solution is : =  x + (2/3)ln|x-1|  - (1/3)ln((x+½)²+(√3/2)²) - (2/√3)arctan((2x+1)/√3) + C where C is constant

(6) x^2 / x^4 – x^2 – 12 dx

= 1/7* [ 7x2 / (x2-4)(x2+3)] .dx

= 4/7* [ 1 / (x2-4)] + 3/7*[1 / (x2+3)] .dx

solution. is = 1/7*ln[(x+2)/(x-2)] + 31/2/7 * tan-1(x/3) +C where C is constant

 

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free