Last Activity: 14 Years ago
using tan3x=(tanx+tan2x)/1+tanxtan2x
we have the given integration as ∫(tanx+tan2x-tan3x)
which is equal to ln|secx|+1/2ln|sec2x|-1/3ln|sce3x|
tell me are you satisfied with my solution.
Last Activity: 14 Years ago
I = tanxtan2xtan3xdx ..............1
tan3x = tan(x+2x) = tanx + tan2x/1-tanxtan2x
tan3x(1-tanxtan2x) = tanx + tan2x
tanxtan2xtan3x = tan3x - tanx - tan2x .................2
from 1 & 2
I =( tan3x -tanx -tan2x )dx
I = logsec3x/3 - logsec2x/2 - logsecx + C
=log[ (sec3x)1/3/(sec2x)1/2(secx) ] + C
approve if u like it
Last Activity: 4 Years ago
Dear Student,
Please find below the solution to your problem.
Let’s get some weapons from our math battle armory :-)
x+2x=3x
tan(A+B)=tan(A)+tan(B)1−tan(A)tan(B)
∫tan(x)dx=ln|sec(x)|+k,k∈R
∫tan(ax+b)dx=1aln|sec(ax+b)|+k,k,a,b∈R
Now let’s enter the battlefield !
tan(3x)=tan(x+2x)=tan(x)+tan(2x)1−tan(x)tan(2x)
Therefore, tan(3x)−tan(x)tan(2x)tan(3x)=tan(x)+tan(2x)
which finally gets us something to work with ! (i.e.)
tan(3x)−tan(2x)−tan(x)=tan(x)tan(2x)tan(3x)
No
∫tan(x)tan(2x)tan(3x)dx=∫tan(3x)−tan(2x)−tan(x)dx=13ln|sec(3x)|−12ln|sec(2x)|−ln|sec(x)|+k,k∈R
Thanks and Regards
Prepraring for the competition made easy just by live online class.
Full Live Access
Study Material
Live Doubts Solving
Daily Class Assignments
Get your questions answered by the expert for free
Last Activity: 2 Years ago
Last Activity: 2 Years ago
Last Activity: 2 Years ago
Last Activity: 3 Years ago
Last Activity: 3 Years ago