Flag Integral Calculus> definite intigration...
question mark

What is the integration of {xlog(sin(x)} in lower limit is o and upper limit is pietell me it with proper steps.

vikash chandoa , 14 Years ago
Grade 12
anser 2 Answers
vikas askiitian expert

Last Activity: 14 Years ago

this q integration is too lenthy , here is the complete solution ...

I = xlog(sinx)dx     .........1                   lim 0 t0 pi

I =(pi-x)logsin(pi-x)dx                    lim 0 to pi                      (using property of integration)

I = -xlog(sinx)dx  + pilog(sinx)dx ................2              lim 0 to pi

adding 1 & 2

2I = pilogsinxdx or

2I/pi = logsinxdx  .....................3           lim 0 to pi    

 

 2Ipi = logsinxdx + logsinpi-x  dx      lim 0 to pi/2                (by property)

 2I/PI = 2logsinx dx ................4      lim 0 to pi/2

 2I/pi = 2logcosx dx ................5   lim 0 to pi/2           (by property)

 adding 4 & 5

 4I/pi =2log(sin2x)/2 dx       lim 0 to pi/2

  2I/pi = logsin2xdx - log2 dx        from 0 to pi/2    

  2I/pi =   I1 - log2dx                      lim 0 to pi

from this eq 6 integrating logsin2x seperately

 I1 = logsin2xdx             lim 0 to pi/2

put 2x =t

 I1 = (logsintdt)/2  lim 0 to pi

now interchanging variable t with x

 I1 = logsinxdx/2            lim 0 to pi ........................7

from eq 3 & 7

I1 = I/pi .........8

putting eq 8 in 6

then

        2I/pi = I/Pi  - log2dx    lim 0 to pi

       I/pi = -(log2)x      lim 0 to pi

          I/pi   =-pilog2

 

 

 

 

arnab nandy

Last Activity: 14 Years ago

hi. i'm not writting the integral sign and the limits manage with this


 xlog(sinx)=I

replace x by (0+∏)-x

I=[(0+∏)-x]log sin(∏-x)=(∏-x)log(sinx)

I=∏log(sinx)-xlog(sinx)

I=∏logsinx -I

2I=∏logsinx 

(2/∏)I=∫logsinx=F

then using another property of definte integration

i.e

o  f(x)=o(∏/2) f(x) +o(∏/2) f(2a-x)

F= 0∫?(∏/2)logsinx+ 0(∏/2)logsin(∏-x)=2logsinx

F/2=-(∏/2)log2     (the above one is a standard integral)

F=-∏log2=(2/∏)I

I=-(∏2/2)log2

final answer



Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...