1. the locus of point (l,m). if the line lx+my=1 touches the circle x^2+y^2=a^2 a – x^2+y^2=2a^2 b – 2x^2+2y^2 = a^2 c – a^2(x^2+y^2) = 1 d – a^2(x^2+y^2) = 22. locus of point of intersection of tangents to the circle x^2+y^2+2x+4y-1 = 0 a – x^2+y^2+2x+4y-19 = 0 b – x^2+y^2-2x-4y-19 = 0 c – x^2+y^2+2x+4y+19 = 0 d – x^2+y^2-2x-4y+19 = 03. locus of point of intersection of perpendicular tangents to the circle x^2+y^2 = 10 a – x^2+y^2 = 5 b – x^2+y^2 = 20 c – x^2+y^2 = 10 d – x^2+y^2 = 100
1. the locus of point (l,m). if the line lx+my=1 touches the circle x^2+y^2=a^2
a – x^2+y^2=2a^2
b – 2x^2+2y^2 = a^2
c – a^2(x^2+y^2) = 1
d – a^2(x^2+y^2) = 2
2. locus of point of intersection of tangents to the circle x^2+y^2+2x+4y-1 = 0
a – x^2+y^2+2x+4y-19 = 0 b – x^2+y^2-2x-4y-19 = 0
c – x^2+y^2+2x+4y+19 = 0
d – x^2+y^2-2x-4y+19 = 0
3. locus of point of intersection of perpendicular tangents to the circle x^2+y^2 = 10
a – x^2+y^2 = 5
b – x^2+y^2 = 20
c – x^2+y^2 = 10
d – x^2+y^2 = 100