#### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-5470-145

+91 7353221155

CART 0

• 0
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

# 1.∫dx/logx  what will value of the intigarlRgcb .oith lgfh boryi kgyjc gegv

Anish Singhal
3 years ago
Well, the logarithmic integral is given by -

∫1log(x)dx=li(x)∫1log(x)dx=li(x)

which is a special function known as the integral logarithm.

It can also be represented as -

∫1log(x)dx=∫1log(x)dx=

Lett=log(x)which can also be written ase^t=x
Therefore on differentiatingt=log(x)on both sides we get,

dt=xdx

or,dx=xdt→dx=etdt

∫1log(x)dx=∫e^t/tdt

which givesEi(t)+c

i.eEi(log(x))+c

HereEi is an exponential integral.
Anish Singhal
3 years ago
Well, the logarithmic integral is given by -

∫1log(x)dx=li(x)∫1log(x)dx=li(x)

which is a special function known as the integral logarithm.

It can also be represented as -

∫1log(x)dx=∫1log(x)dx=

Lett=log(x)which can also be written ase^t=x
Therefore on differentiatingt=log(x)on both sides we get,

dt=xdx

or,dx=xdt→dx=etdt

∫1log(x)dx=∫e^t/tdt

which givesEi(t)+c

i.eEi(log(x))+c

HereEi is an exponential integral.