Guest

Why crystal field splitting of square planner is greater than crystal field splitting of octahedral.

Why crystal field splitting of square planner is greater than crystal field splitting of octahedral.

Grade:12th pass

1 Answers

Vikas TU
14149 Points
4 years ago
Dear student 
The most common type of complex is octahedral, in which six ligands form the vertices of an octahedron around the metal ion. In octahedral symmetry the d-orbitals split into two sets with an energy difference, Δoct (the crystal-field splitting parameter) where the dxy, dxz and dyz orbitals will be lower in energy than the dz2 and dx2-y2, which will have higher energy, because the former group is farther from the ligands than the latter and therefore experiences less repulsion. The three lower-energy orbitals are collectively referred to as t2g, and the two higher-energy orbitals as eg. (These labels are based on the theory of molecular symmetry). Typical orbital energy diagrams are given below in the section High-spin and low-spin.
Tetrahedral complexes are the second most common type; here four ligands form a tetrahedron around the metal ion. In a tetrahedral crystal field splitting, the d-orbitals again split into two groups, with an energy difference of Δtet. The lower energy orbitals will be dz2 and dx2-y2, and the higher energy orbitals will be dxy, dxz and dyz - opposite to the octahedral case. Furthermore, since the ligand electrons in tetrahedral symmetry are not oriented directly towards the d-orbitals, the energy splitting will be lower than in the octahedral case. Square planar and other complex geometries can also be described by CFT.

Think You Can Provide A Better Answer ?

ASK QUESTION

Get your questions answered by the expert for free