badge image

Enroll For Free Now & Improve Your Performance.

×
User Icon
User Icon
User Icon
User Icon
User Icon

Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade:

                        

why is one lobe of hybrid orbital small and the other lobe large?

9 years ago

Answers : (1)

SAGAR SINGH - IIT DELHI
879 Points
							

Dear student,

Covalent bonds are formed when atomic orbitals overlap.  There are two types of orbital overlap that an organic chemist needs to be familiar with.  Sigma, s, overlap occurs when there is one bonding interaction that results from the overlap of two orbitals.  Pi, p, overlap occurs when two bonding interactions result from the overlap of orbitals.

The organic chemist also needs to realise how these orbital overlaps relate to the type of bonding that is occuring between atoms:

single bond      s overlap
double bond     s and p overlaps
triple bond       s and two p overlaps

If one tries to correlate the overlap of atomic orbitals to the shape of a molecule, however, the expected geometry does not correspond to a maximum orbital overlap.   Take a look at methane, CH4. VSEPR predicts a tetrahedral geometry about the carbon atom but this is not achieved when one considers a maximum orbital overlap between four 1s orbitals of H and the 2s, 2px, 2py and 2pz orbitals of carbon.

Hybridisation is a solution to this problem.  It is the imaginary mixing of the 2s, 2px, 2py and 2pz atomic orbitals of carbon to form a new set of 'hybrid' orbitals that orient themselves in the desired VSEPR geometry.  The hybrid orbitals are equivalent to one another making all orbital overlaps equivalent, therefore, all C-H bonding interactions equivalent.

Hybrid orbitals are named by considering the type and number of atomic orbitals from which they arose.  For CH4 then the hybridisation for the carbon is sp3.   One sees that the hybridisation of an atom can be determined very quickly by considering the number of electron groups about an atom.  Hybrid orbitals are responsible for all the s bonding overlaps in a molecule.  Unhybridised orbitals are responsible for all the p bonding overlaps in a molecule.
 

 
9 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 54 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details