Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

Sir, I am a student preparing for it Joe.I want to write Tensors ,can you please tell me the procedure,about how to apply ,and how the application is proceeded

Sir,
I am a student preparing for it Joe.I want to write Tensors ,can you please tell me the procedure,about how to apply ,and how the application is proceeded

Grade:12

1 Answers

Saurabh Kumar
askIITians Faculty 2411 Points
6 years ago
Tensors are simply mathematical objects that can be used to describe physical properties, just like scalars and vectors. In fact tensors are merely a generalisation of scalars and vectors; a scalar is a zero rank tensor, and a vector is a first rank tensor.The rank (or order) of a tensor is defined by the number of directions (and hence the dimensionality of the array) required to describe it. For example, properties that require one direction (first rank) can be fully described by a 3×1 column vector, and properties that require two directions (second rank tensors), can be described by 9 numbers, as a 3×3 matrix. As such, in general an nth rank tensor can be described by 3n coefficients.

The need for second rank tensors comes when we need to consider more than one direction to describe one of these physical properties. A good example of this is if we need to describe the electrical conductivity of a general, anisotropic crystal. We know that in general for isotropic conductors that obey Ohm's law:j=σEWhich means that the current density j is parallel to the applied electric field, E and that each component of j is linearly proportional to each component of E. (e.g. j1=σE1).

However in an anisotropic material, the current density induced will not necessarily be parallel to the applied electric field due to preferred directions of current flow within the crystal (a good example of this is in graphite). This means that in general each component of the current density vector can depend on all the components of the electric field:j1=σ11E1+σ12E2+σ13E3
j2=σ21E1+σ22E2+σ23E3
j3=σ31E1+σ32E2+σ33E3

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free