Samyak Jain
Last Activity: 6 Years ago
1 + i =

(1/

+ i.1/

) =

(cos

/4 + i sin

/4) =

.e^(i.

/4) [Euler’s form of complex number]

z = log
2 (1 + i) = log
2 (

.e^(i.

/4))
and z(bar) = log
2 (

.e^(– i.

/4))
z + z(bar) = log
2 (

.e^(i.

/4)) + log
2 (

.e^(– i.

/4))
= log
2 (

.e^(i.

/4).

.e^(– i.

/4)) = log
2 (2)
=
1 [

log
c a + log
c b = log
c ab and log
aa = 1]
z – z(bar) = log
2 (

.e^(– i.

/4)) – log
2 (

.e^(i.

/4)) = log
2 (

.e^(i.

/4) / (

.e^(– i.

/4))
= log
2 (e^(i

/4 + i

/4)) = log
2 (e^(i

/2)) [

log
c a – log
c b = log
c a/b]
= log
e (e^(i

/2)) / log
e 2 using change of base law of logarithm.
= (i

/2) / ln2
= i

/2.ln2 = i.

/ln2
2 =
i.
/ln4
z + z(bar) + i(z – z(bar)) = 1 + i(i.

/ln4) = 1 + i
2.

/ln4 = 1 –

/ln4 [i
2 = – 1]
=
(ln4 –
) / ln4.