Flag IIT JEE Entrance Exam> Please explain how the solve the image pr...
question mark

Please explain how the solve the image problem please explain fully clearly......!..............

sudhanva gv , 5 Years ago
Grade
anser 1 Answers
Samyak Jain

Last Activity: 5 Years ago

1 + i = \sqrt{2} (1/\sqrt{2} + i.1/\sqrt{2})  =  \sqrt{2}(cos\pi/4 + i sin\pi/4)  =  \sqrt{2}.e^(i.\pi/4)   [Euler’s form of complex number]
\therefore z  =  log2 (1 + i)  =  log2 (\sqrt{2}.e^(i.\pi/4))
and z(bar)  =  log2 (\sqrt{2}.e^(– i.\pi/4))
z + z(bar)  =  log2 (\sqrt{2}.e^(i.\pi/4))  +  log2 (\sqrt{2}.e^(– i.\pi/4))
                =  log2 (\sqrt{2}.e^(i.\pi/4).\sqrt{2}.e^(– i.\pi/4))  =  log2 (2)
                =  1                                                  [\because logc a + logc b = logc ab and logaa = 1]
z – z(bar) = log2 (\sqrt{2}.e^(– i.\pi/4)) – log2 (\sqrt{2}.e^(i.\pi/4))  =  log2 (\sqrt{2}.e^(i.\pi/4) / (\sqrt{2}.e^(– i.\pi/4))
               = log2 (e^(i\pi/4 + i\pi/4))  =  log2 (e^(i\pi/2))         [\because logc a – logc b = logc a/b]
               =  loge (e^(i\pi/2)) / loge 2               using change of base law of logarithm.
               = (i\pi/2) / ln2
               = i \pi/2.ln2  =  i.\pi/ln22  =  i.\pi/ln4
\therefore z + z(bar) + i(z – z(bar))  =  1 + i(i.\pi/ln4)  =  1 + i2.\pi/ln4 = 1 – \pi/ln4   [i2 = – 1]
                                        = (ln4 – \pi) / ln4.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...