Samyak Jain
Last Activity: 5 Years ago
1 + i =
(1/
+ i.1/
) =
(cos
/4 + i sin
/4) =
.e^(i.
/4) [Euler’s form of complex number]
z = log
2 (1 + i) = log
2 (
.e^(i.
/4))
and z(bar) = log
2 (
.e^(– i.
/4))
z + z(bar) = log
2 (
.e^(i.
/4)) + log
2 (
.e^(– i.
/4))
= log
2 (
.e^(i.
/4).
.e^(– i.
/4)) = log
2 (2)
=
1 [
log
c a + log
c b = log
c ab and log
aa = 1]
z – z(bar) = log
2 (
.e^(– i.
/4)) – log
2 (
.e^(i.
/4)) = log
2 (
.e^(i.
/4) / (
.e^(– i.
/4))
= log
2 (e^(i
/4 + i
/4)) = log
2 (e^(i
/2)) [
log
c a – log
c b = log
c a/b]
= log
e (e^(i
/2)) / log
e 2 using change of base law of logarithm.
= (i
/2) / ln2
= i
/2.ln2 = i.
/ln2
2 =
i./ln4 z + z(bar) + i(z – z(bar)) = 1 + i(i.
/ln4) = 1 + i
2.
/ln4 = 1 –
/ln4 [i
2 = – 1]
=
(ln4 – ) / ln4.