Samyak Jain
Last Activity: 5 Years ago
lim (cosx – cosa) / (cotx – cota) It is of 0 by 0 form. Simplifying it we can calculate the limit.
x
a
We know cosx – cosa = 2 sin(x+a)/2 sin(a – x)/2 and
cotx – cota = cosx/sinx – cosa/sina = (sina cosx – cosa sinx) / sinx sina = sin(a – x) / sinx sina
lim (cosx – cosa) / (cotx – cota) = lim [2 sin(x+a)/2 sin(a – x)/2] / [sin(a – x) / sinx sina]
x
a x
a
= lim [2 sin(x+a)/2 sin(a – x)/2 . sinx sina ] / [2 sin (a – x)/2 cos(a – x)/2 ]
x
a
= lim sin(x+a)/2 . sinx sina / cos(a – x)/2 = sina lim sin(x+a)/2 . sinx / lim cos(a – x)/2
= sina sin(a+a)/2 . sina / cos(a – a)/2 = sina sina .sina / cos0
= sin3a