Flag IIT JEE Entrance Exam> Find the value of the given Lim x tending...
question mark

Find the value of the given Lim x tending to 0 cos(tanx) - cosx/x^4

Himanshu yadav , 5 Years ago
Grade 12
anser 1 Answers
Samyak Jain

Last Activity: 5 Years ago

Let L be the given limit.
\therefore L = lim x\rightarrow0 [cos(tanx) – cosx] / x4      ...Using cosA – cosB = 2 sin{(A + B)/2} sin{(A – B)/2}
       = lim x\rightarrow0 [2 sin{(tanx + x)/2} sin{(x – tanx)/2}] / x4
Multiply and divide by {(tanx + x)/2} {(x – tanx)/2}
  L   = 2 . lim x\rightarrow0 sin{(tanx + x)/2} . {(tanx + x)/2} / (tanx + x)/2 . 
                    sin{(x – tanx)/2} . {(x – tanx)/2} / {(x – tanx)/2} / x4
 
As x\rightarrow0(tanx + x)/2 \rightarrow0 and (x – tanx)/2 \rightarrow0.
L = 2 . lim x\rightarrow0 sin{(tanx + x)/2} / (tanx + x)/2 .lim x\rightarrow0 sin{(x – tanx)/2} / {(x – tanx)/2} . 
        lim x\rightarrow{(tanx + x)/2} . {(x – tanx)/2} / x4
 
We know that lim x\rightarrow0  tanx / x = 1
\therefore lim x\rightarrow0 sin{(tanx + x)/2} / (tanx + x)/2 = 1
and lim x\rightarrow0 sin{(x – tanx)/2} / {(x – tanx)/2} = 1
 
So, L = 2 . 1 . 1 . lim x\rightarrow{(tanx + x) / 2} . {(x – tanx) / 2} / x4
          = 2 lim x\rightarrow(tanx + x) . (x – tanx) / 4x4
          = ½ lim x\rightarrow0 (x2 – tan2x) / x4
Here use expansion of tangent series.
tanx = x + (1/3) x3 + (2/15) x5 + ….
tan2x = x2 + (2/3) x4 + f(x), where degree of x in f(x) is greater than 4.
\therefore L = ½ lim x\rightarrow0 [ x2 – {x2 + (2/3) x4 + f(x)} ] / x4
L = ½ lim x\rightarrow0 [ x2 – x2 – (2/3)x4 –  f(x)} ] / x4
L = ½ lim x\rightarrow0 [– (2/3) x4 –  f(x)} ] / x4
L = ½ lim x\rightarrow0 [–(2/3) x4 / x4 ] – ½ lim x\rightarrow0 [ f(x) / x4 ] = (1/2) (– 2/3)  =  – 1/3
\because f(x) contains powers of x greater than 4,  lim x\rightarrow0 [ f(x)} ] / x4 = 0,
\therefore lim x\rightarrow[cos(tanx) – cosx] / x4 = – 1/3.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...