Flag Algebra> answer..................?????????????????...
question mark

answer..................??????????????????????????????????

Soma Mesh , 5 Years ago
Grade 12
anser 1 Answers
Samyak Jain

Last Activity: 5 Years ago

\int_{-a}^{a}  f(x) dx  =  \int_{0}^{a} { f(x) + f(–x) } dx
So, given integral becomes 
\int_{0}^{\pi/2} {1 / ( [x] + [sinx] + 4)  + 1 / ( [–x] + [–sinx] + 4) } dx  =  \int_{0}^{\pi/2} {1 / ( [x] + [sinx] + 4)} dx  + \int_{0}^{\pi/2} 1 / ( [–x] + [–sinx] + 4) } dx
Let us take first part of the integral.
\int_{0}^{\pi/2} {1 / ( [x] + [sinx] + 4)} dx   =  \int_{0}^{1} {1 / ( [x] + [sinx] + 4)} dx   +   \int_{1}^{\pi/2} {1 / ( [x] + [sinx] + 4)} dx 
                       =  \int_{0}^{1} {1 / ( 0 + 0 + 4)} dx    +    \int_{1}^{\pi/2} {1 / ( 1 + 0 + 4)} dx  
\because for sinx belongs to (0, \pi/2), [sinx] = 0  and  x belongs to (0,1), x = 0 while x belongs to (1,\pi/2), x = 1.
\int_{0}^{\pi/2} {1 / ( [x] + [sinx] + 4)} dx   =  \int_{0}^{1} (1 / 4) dx  +  \int_{1}^{\pi/2} (1/5) dx  =  (1/4) [ x ]_{0}^{1}  + (1/5) [ x ]_{1}^{\pi/2}
                             =  (1/4)(1 – 0) + (1/5)(\pi/2  –  1) = \pi/10 + 1/4 – 1/5  =  \pi/10 + 1/20
                             =  (1/20)(2\pi + 1)           ….....(1)
Now,
\because  [x] + [–x] = –1  \therefore  [–x] = –1 – [x]  and  [–sinx] = –1 – [sinx].
[–x] + [–sinx] + 4  =  –1 – [x]  –1 –  [sinx]  +  4  =  2  – [x]  –  [sinx].
Take second part of the integral.
\int_{0}^{\pi/2} 1 / ( [–x] + [–sinx] + 4) } dx   =   \int_{0}^{\pi/2} 1 / ( 2  – [x]  –  [sinx]) } dx 
                           =    \int_{0}^{1} {1 / ( 2  – [x]  –  [sinx])} dx   +   \int_{1}^{\pi/2} {1 / ( 2  – [x]  –  [sinx])} dx
                           =   \int_{0}^{1} {1 / ( 2  – 0 – 0)} dx   +   \int_{1}^{\pi/2} {1 / ( 2  – 1 – 0)} dx        [Reason is similar as above.]
                      =  (1/2)(1 – 0)  +  (1/1)(\pi/2 – 1)  = 1/2 + \pi/2 – 1 
                      =  \pi/2 – 1/2  =  (1/2)(\pi – 1)               …........(2)
\therefore Given definite integral is : (1/20)(2\pi + 1)  +  (1/2)(\pi – 1)  =  (1/20)(2\pi + 1 + 10\pi – 10)
                   =  (1/20)(12\pi – 9)
                   =  (3/20)(4\pi – 3)   is the answer.

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...