Hey there! We receieved your request
Stay Tuned as we are going to contact you within 1 Hour
One of our academic counsellors will contact you within 1 working day.
Click to Chat
1800-5470-145
+91 7353221155
Use Coupon: CART20 and get 20% off on all online Study Material
Complete Your Registration (Step 2 of 2 )
Sit and relax as our customer representative will contact you within 1 business day
OTP to be sent to Change
Dear Devashish,
Hi, Generally speaking the center of the circle which equation is (x-a)^2+(y-b)^2=R^2 is the point M(a,b) and the radius of this circle is R (x – 2)^2 + (y + 3)^2 = 17 the center of this circle is A(2,-3)and the center of the circle (x – 5)^2 + y^2 = 32 is B(5,0)The line (D): y=ax+b which passes through A and B is such thatA belongs to (D) ==> -3=a(2)+b=2a+b ==> b=-2a-3(*)B belongs to (D) ==> 0=a(5)+b=5a+b ==>b=-5a(**)(*) and (**) lead to -5a=-2a-3 ==> 5a-2a-3=0 ==> 3a-3=0 ==>3a=3==> a=3/3=1 ==> a=1 From (**) b=-5a=-5(1)=-5Finally the equation of (D) is y=x-5The circle (C) with the equation (x-a)^2+(y-b)^2=r^2 has the same center with the circle which equation is (x – 4)^2 +(y + 3)^2 = 49 means a=4 and b=-3 O (4,-3) is the center of the circle (C). Therefore the equation of (C) (x – 4)^2 +(y + 3)^2=r^2 where r is the radius of (C) If (C) is tangent to the y-axis this (C) intersects the y-axis( which equation is x=0) at only one point M(x'', y'') x''=0 because M belongs to the y-axis M belongs to (C) y''=-3 because M is the orthogonal projection of O on the y-axis. The radius of (C) is the distance between O and M r=OM=sqrt[(x''-4)^2+(y''+3)^2]=sqrt[(0-4)^…=sqrt[(-4)^2+(0)^2]=sqrt16=4 Finally the radius of (C) is r=4Finally the equation of (C) is (x-4)^2+(y+3)^2=4^2=16The area of the circle (C) is A =pi*r^2 where pi=3.14 and r is the radius of (C) A=3,14(4)^2=50.24The area A'' of the circle (x-4)^2+(y+3)^2=49=7^2 is given by A''=pi*r''^2 where r'' is its radius . From the equation above we draw r=7 then A''=3.14(7)^2=153.86. The area S of the ring formed by the two circles is S= A''-A=7^2*pi-4^2*pi= 49pi-16pi=33pi units squared The line x=9 is secant to the circle (x – 6)^2 + (y + 2)^2 = 9 if by replacing x by its value in the equation of the circle we find two values of y i.e the equation (9-6)^2+(y+2)^2=9 has two roots then we will deduct that the line and the circle are secant (9-6)^2+(y+2)^2=9 ==> (3)^2 +(y+2)^2=9 ==> 9+(y+2)^2=9 => (y+2)^2=9-9=0 ==> (y+2)^2=0 ==> y+2=0y=-2 One value for y therefore we can deduct that the line x=9 is tangent to the circle (x – 6)^2 + (y + 2)^2 = 9. If we had not found any value for y we would have deducted that the line and the circle are neither secant nor tangentThe circle (C) (x-a)^2+(y-b)^2=r^2 contain the points J(-6,0) K(-3,3) and L(0,0) J belongs to (C) ==> (-6-a)^2+(0-b)^2=r^2 ==> (-6-a)^2+(-b)^2=r^2 (*)K belongs to (C) ==> (-3-a)^2+(3-b)^2=r^2 (**)L belongs to (C) ==> (0-a)^2+(0-b)^2=r^2 ==> (-a)^2+(-b)^2=r^2 ==>a^2+b^2=r^2 (***)(*) ==> (-6-a)^2+(-b)^2=r^2 ==> 36-12a+a^2+b^2=r^2 ==> 36-12a=-a^2-b^2+r^2=0 because from (***) a^2+b^2=r^2Hence 36-12a=0 ==> 12a=36 ==> a=36/12=3 ==> a=3(**) ==> (-3-a)^2+(3-b)^2=r^2 ==> 9-6a+a^2+9-6b+b^2=r^2 ==> 18-6a-6b+a^2+b^2=r^2 ==> 18-6a-6b=-a^2-b^2+r^2=0 ==> 18-6a-6b=0 By replacing a by its value we obtain 18-6(3)-6b=0==. 18-18-6b=0 ==> -6b=0 ==> b=0a^2+b^2=r^2 ==> 3^2+0^2=r^2 ==> 9=r^2 ==> r=-3 or r=3. Since r>=0 we deduct r=3Finally the equation of the circle (C) is (x-3)^2+(y-0)^2=3^2==> (x-3)^2+y^2=3^2
Cracking IIT just got more exciting,It s not just all about getting assistance from IITians, alongside Target Achievement and Rewards play an important role. ASKIITIANS has it all for you, wherein you get assistance only from IITians for your preparation and win by answering queries in the discussion forums. Reward points 5 + 15 for all those who upload their pic and download the ASKIITIANS Toolbar, just a simple to download the toolbar….
So start the brain storming…. become a leader with Elite Expert League ASKIITIANS
Thanks
Aman Bansal
Askiitian Expert
Get your questions answered by the expert for free
You will get reply from our expert in sometime.
We will notify you when Our expert answers your question. To View your Question
Win Gift vouchers upto Rs 500/-
Register Yourself for a FREE Demo Class by Top IITians & Medical Experts Today !