Flag IIT JEE Entrance Exam> limits...
question mark

lim x-->0 [cos(sinx)-cosx] / x4

ans: 1/6

jyoti dogra , 13 Years ago
Grade 11
anser 4 Answers
Swapnil Saxena

Last Activity: 13 Years ago

Using L Hopitals rule

lim x tends to 0 [cos(sin(x))-cos(x)]/x^4 = d/dx[cos(sin(x))-cos(x)]/x^4 if ([cos(sin(x))-cos(x)]=0 and x=4)

Again since the expression is yielding 0/0 appyling L hopitals rule, 

lim x tends to 0 [cos(sin(x))-cos(x)]/x^4 = d2/dx2[cos(sin(x))-cos(x)]/x^4 at x=0

Again since the expression is yielding 0/0 appyling L hopitals rule, 

lim x tends to 0 [cos(sin(x))-cos(x)]/x^4 = d3/dx3[cos(sin(x))-cos(x)]/x^4 at x=0

Again since the expression is yielding 0/0 appyling L hopitals rule, 

lim x tends to 0 [cos(sin(x))-cos(x)]/x^4 = d4/dx4[cos(sin(x))-cos(x)]/x^4 at x=0

Now Since the expression 4/24= 1/6 .

Hence 1/6 is the answer 

 


Chetan Mandayam Nayakar

Last Activity: 13 Years ago

lim[cos(sinx)-cosx]/x^4

=lim[-sin(sinx)cosx+sinx]/(4x^3)

=lim[sin(sinx)sinx-cos(sinx)cos2x+cosx]/12x2

=lim[cosx-cos(sinx)cos2x]/12x2

=lim[1-cos(sinx)cosx]/12x2

=lim[sin(sinx)cos2x+cos(sinx)sinx]/24x

differentiate once more w.r.t. to get the answer

Dear Moderator: If I need to provide any more details, please contact me at <mn_chetan@yahoo.com

jyoti dogra

Last Activity: 13 Years ago

thanks a lot

Samyak Jain

Last Activity: 6 Years ago

Another method :
Using cosA – cosB = 2 sin(A + B)/2 sin(B – A)/2 
cos(sinx) – cosx = 2 sin{(sinx + x)/2} sin{(x – sinx)/2}
 
Let L be the given limit.
\therefore L = lim x\rightarrow0 [cos(sinx) – cosx] / x4 
       = lim x\rightarrow0 [2 sin{(sinx + x)/2} sin{(x – sinx)/2}] / x4
       = 2 . lim x\rightarrow0 sin{(sinx + x)/2} . {(sinx + x)/2} / (sinx + x)/2 . 
                    sin{(x – sinx)/2} . {(x – sinx)/2} / {(x – sinx)/2} / x4
 
As x\rightarrow0(sinx + x)/2 \rightarrow0 and (x – sinx)/2 \rightarrow0.
L = 2 . lim x\rightarrow0 sin{(sinx + x)/2} / (sinx + x)/2 .lim x\rightarrow0 sin{(x – sinx)/2} / {(x – sinx)/2} . 
        lim x\rightarrow{(sinx + x)/2} . {(x – sinx)/2} / x4
 
We know that lim x\rightarrow0  sinx / x = 1
\therefore lim x\rightarrow0 sin{(sinx + x)/2} / (sinx + x)/2 = 1
and lim x\rightarrow0 sin{(x – sinx)/2} / {(x – sinx)/2} = 1
 
So, L = 2 . 1 . 1 . lim x\rightarrow{(sinx + x)/2} . {(x – sinx)/2} / x4
          = 2 lim x\rightarrow(sinx + x) . (x – sinx) / 4x4
          = ½ im x\rightarrow0 (x2 – sin2x) / x4
Here use expansion of sine series.
sinx = x – x3 / 3! + x5 / 5! – ….
sin2x = x2 – 2x4 / 3! + f(x), where degree of x in f(x) is greater than 4.
\therefore L = ½ lim x\rightarrow0 [ x2 – {x2 – 2x4 / 3! + f(x)} ] / x4
L = ½ lim x\rightarrow0 [ x2 – x2 + 2x4 / 6 –  f(x)} ] / x4
L = ½ lim x\rightarrow0 [ x4 / 3 –  f(x)} ] / x4
L = ½ lim x\rightarrow0 [ x4 / 3x4 ] –  lim x\rightarrow0 [ f(x) / x4 ]
\because f(x) contains powers of x greater than 4,  lim x\rightarrow0 [ f(x)} ] / x4 = 0,
 L = ½ lim x\rightarrow0 [ x4 / 3x4 ] = ½ . 1/3 = 1/6
\therefore lim x\rightarrow[cos(sinx) – cosx] / x4 = 1/6

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free