Flag General Physics> What is the de Broglie wavelength of a ni...
question mark

What is the de Broglie wavelength of a nitrogen molecule in air at 300 K? Assume that the molecule is moving with the root-mean- square speed of molecules at this temperature. (Atomic mass of nitrogen = 14.0076 u)

Jayant Kumar , 11 Years ago
Grade 11
anser 1 Answers
Askiitians Tutor Team

Last Activity: 16 Days ago

To find the de Broglie wavelength of a nitrogen molecule in air at 300 K, we first need to calculate the root-mean-square (rms) speed of the nitrogen molecules and then use that speed to determine the de Broglie wavelength. The de Broglie wavelength is given by the formula:

Calculating the Root-Mean-Square Speed

The root-mean-square speed (vrms) of gas molecules can be calculated using the equation:

vrms=3kTm

Where:

  • k is the Boltzmann constant, approximately 1.38×1023J/K.
  • T is the absolute temperature in Kelvin (300 K in this case).
  • m is the mass of a single nitrogen molecule in kilograms.

First, we need to convert the atomic mass of nitrogen from atomic mass units (u) to kilograms. The atomic mass of nitrogen is given as 14.0076 u. Since 1 u is approximately 1.66×1027kg, we can calculate:

m=14.0076u×1.66×1027kg/u2.32×1026kg

Now, substituting the values into the vrms formula:

vrms=3×(1.38×1023J/K)×300K2.32×1026kg

Calculating the numerator:

3×(1.38×1023)×3001.242×1020J

Now, dividing by the mass:

vrms=1.242×10202.32×10265.35×105731.3m/s

Finding the de Broglie Wavelength

Now that we have the rms speed, we can calculate the de Broglie wavelength (λ) using the formula:

λ=hmv

Where:

  • h is Planck's constant, approximately 6.626×1034J s.
  • v is the speed of the molecule (which we found to be vrms).

Substituting the values into the de Broglie wavelength formula:

λ=6.626×1034J s(2.32×1026kg)×(731.3m/s)

Calculating the denominator:

2.32×1026×731.31.698×1023kg m/s

Now, we can find the wavelength:

λ6.626×10341.698×10233.90×1011m

Final Result

Thus, the de Broglie wavelength of a nitrogen molecule in air at 300 K is approximately 3.90×1011m or 39.0pm (picometers). This wavelength is extremely small, reflecting the quantum nature of particles at the molecular level.

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments