Flag General Physics> Sir Pls prove that the vector area of a t...
question mark

Sir
Pls prove that the vector area of a triangle whose vertices are a vector bvector and cvector is
0.5(bvec cross cvector +cvector cross a vec+ a vector cross b vector)
Thanks and Rgds,
Jai

Jai Mahajan , 11 Years ago
Grade 12
anser 1 Answers
Sumit Majumdar

Last Activity: 11 Years ago

Dear student,
Let the vertices be given by the vectors:
\overrightarrow{A}=\left ( a_{1}, a_{2}, a_{3} \right ), \overrightarrow{B}=\left ( b_{1}, b_{2}, b_{3} \right ), \overrightarrow{C}=\left ( c_{1}, c_{2}, c_{3} \right )
So, the area would be given by:
\Delta =\frac{1}{2}\sqrt{\begin{vmatrix} a_{2} & a_{3} & 1\\ b_{2} & b_{3} & 1\\ c_{2} & c_{3}& 1 \end{vmatrix}^{2}+\begin{vmatrix} a_{3} & a_{1} & 1\\ b_{3} & b_{1} & 1\\ c_{3} & c_{1}& 1 \end{vmatrix}^{2}+\begin{vmatrix} a_{1} & a_{2} & 1\\ b_{1} & b_{2} & 1\\ c_{1} & c_{2}& 1 \end{vmatrix}^{2}}\Delta =\frac{1}{2}\sqrt{\begin{vmatrix} a_{2} & a_{3} & 1\\ b_{2} & b_{3} & 1\\ c_{2} & c_{3}& 1 \end{vmatrix}^{2}+\begin{vmatrix} a_{3} & a_{1} & 1\\ b_{3} & b_{1} & 1\\ c_{3} & c_{1}& 1 \end{vmatrix}^{2}+\begin{vmatrix} a_{1} & a_{2} & 1\\ b_{1} & b_{2} & 1\\ c_{1} & c_{2}& 1 \end{vmatrix}^{2}}=\frac{1}{2}\left | \left ( A\times B \right )\cdot C \right |
Regards
Sumit
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments