Flag General Physics> pascal-law
question mark

define hydraulic brake.

Indu , 10 Years ago
Grade 12
anser 3 Answers
Nirmal Singh.

Last Activity: 10 Years ago

The hydraulic brake is an arrangement of Braking mechanism which uses brake fluid, typically containing Ethylene Glycol, to transfer pressure from the controlling mechanism to the braking mechanism........we can understand by an example...

Hydraulic brakes transfer energy to stop an object, normally a rotating axle. In a very simple brake system, with just two cylinders and a disc brake, the cylinders could be connected via tubes, with a piston inside the cylinders. The cylinders and tubes are filled with incompressible oil. The two cylinders have the same volume, but different diameters, and thus different cross-section areas. The one with the smallest diameter is called the Master Cylinder The spinning disc brake will be placed down at the piston with the larger cross-section. Suppose the diameter of the master cylinder is half the diameter of the slave cylinder, so the master cylinder has a cross-section four times smaller. Now, if the piston in the master cylinder is pushed down 40 mm, with 10 (N) of force, the slave piston will then move 10 mm, with a force of 40 N.

This force can be further increased by inserting a lever connected between the master piston, a pedal, and a pivot point. If the distance from the pedal to the pivot is three times the distance from the pivot to the connected piston, then it multiplies the pedal force by a factor of 3, when pushing down on the pedal. Now, if we push the pedal 120 mm down, with 10 N of force, a force of 30 N will then be applied to the master piston, and the slave piston will move the brake pad by 10 mm, with a force of 120 N.

Thanks & Regards,
Nirmal Singh,
askIITians Faculty.

raju

Last Activity: 10 Years ago

In a hydraulic brake system, when the brake pedal is pressed, a pushrod exerts force on the piston(s) in the master cylinder, causing fluid from the brake fluid reservoir to flow into a pressure chamber through a compensating port. This results in an increase in the pressure of the entire hydraulic system. This forces fluid through the hydraulic lines toward one or more calipers where it acts upon one or two caliper pistons sealed by one or more seated O-rings which prevent The brake caliper pistons then apply force to the brake pads, which pushes them against the spinning rotor, and the friction between the pads and the rotor causes a braking torque to be generated, slowing the vehicle. Heat generated by this friction is either dissipated through vents and channels in the rotor or conducted through the pads, which are made of specialized heat-tolerant materials such as kevlar or sintered glass. Subsequent release of the brake pedal/lever allows spring(s) to return the master piston(s) back into position. This relieves the hydraulic pressure on the caliper, allowing the brake piston in the caliper assembly to slide back into its housing and the brake pads to release the rotor. The hydraulic braking system is designed as a closed system: unless there is a leak in the system, none of the brake fluid enters or leaves it, nor does the fluid get consumed through use. example:-Hydraulic brakes transfer energy to stop an object, normally a rotating axle. In a very simple brake system, with just two cylinders and a disc brake, the cylinders could be connected via tubes, with a piston inside the cylinders. The cylinders and tubes are filled with incompressible oil. The two cylinders have the same volume, but different diameters, and thus different cross-section areas. The one with the smallest diameter is called the master cylinder. The spinning disc brake will be placed down at[clarification needed] the piston with the larger cross-section. Suppose the diameter of the master cylinder is half the diameter of the slave cylinder, so the master cylinder has a cross-section four times smaller. Now, if the piston in the master cylinder is pushed down 40 mm, with 10 newtons (N) of force, the slave piston will then move 10 mm, with a force of 40 N. This force can be further increased by inserting a lever connected between the master piston, a pedal, and a pivot point. If the distance from the pedal to the pivot is three times the distance from the pivot to the connected piston, then it multiplies the pedal force by a factor of 3, when pushing down on the pedal. Now, if we push the pedal 120 mm down, with 10 N of force, a force of 30 N will then be applied to the master piston, and the slave piston will move the brake pad by 10 mm, with a force of 120 N. In a four-wheel car, the FMVSS Standard 105, 1976; requires the master cylinder is divided internally into two sections, each of which pressurizes a separate hydraulic circuit. Each section supplies pressure to one circuit. Passenger vehicles typically have either a front/rear split brake system or a diagonal split brake system (the master cylinder in a motorcycle or scooter may only pressurize a single unit, which will be the front brake). A front/rear split system uses one master cylinder section to pressurize the front caliper pistons and the other section to pressurize the rear caliper pistons. A split circuit braking system is now required by law in most countries for safety reasons; if one circuit fails, the other circuit can stop the vehicle. Diagonal split systems were used initially on American Motors automobiles in the 1967 production year. The right front and left rear are served by one actuating piston while the left front and the right rear are served, exclusively, by a second actuating piston (both pistons pressurize their respective coupled lines from a single foot pedal). If either circuit fails, the other, with at least one front wheel braking (the front brakes provide most of the speed reduction) remains intact to stop the mechanically-damaged vehicle. Just before 1970, diagonally split systems had become universal for automobiles sold in the United States. This system was developed with front wheel drive cars suspension design to maintain better control and stability during a system failure. The diameter and length of the master cylinder has a significant effect on the performance of the brake system. A larger diameter master cylinder delivers more hydraulic fluid to the caliper pistons, yet requires more brake pedal force and less brake pedal stroke to achieve a given deceleration. A smaller diameter master cylinder has the opposite effect. Component specifics :- A master cylinder may also use differing diameters between the two sections to allow for increased fluid volume to one set of caliper pistons or the other. Component specifics:-

raju

Last Activity: 10 Years ago

answered by your friend raju iiit 1st year kadapa rk valley idupulapaya

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...