badge image

Enroll For Free Now & Improve Your Performance.

×
User Icon
User Icon
User Icon
User Icon
User Icon

Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: upto college level

                        

(a) Show that a solid cylinder of mass M and radius R is equivalent to a thin hoop of mass M and radius R/√2, for rotation about a central axis. (b) The radial distance from a given axis at which the mass of a body could be concentrated without altering the rotational inertia of the body about that axis is called the radius of gyration. Let k represent the radius of gyration and show that This gives the radius of the “equivalent hoop” in the general case.

5 years ago

Answers : (1)

Deepak Patra
askIITians Faculty
471 Points
							233-1422_1.PNG
Therefore, the rotational inertia of the hoop of radius 233-23_1.PNGabout the cylinder axis is equal to the rotational inertia of the solid cylinder.
(b) The rotational inertia of the rigid body is given as:

233-283_1.PNG
5 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 18 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details