badge image

Enroll For Free Now & Improve Your Performance.

×
User Icon
User Icon
User Icon
User Icon
User Icon

Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
Menu
Grade: 11

                        

A disc of radius R has a light pole fixed perpendicular to the disc at the circumference which in turn has a pendulum of length R attached to its other end as shown in figure. The disc is rotated with constant angular velocity omega . The string is making an angle 30° with the rod . Then the angular velocity omega of disc is....

4 years ago

Answers : (3)

Shaswata Biswas
132 Points
							
The ball suspended with a thread is scted upon by two forces : its weight mg, and tension in the string T. The resultant of these two forces produces the necessary centrepetal force along the horizontal so as to make the ball move along a cirular path of radius l (say).
Then, l = R + R.sin45 = R[\frac{1}{ \sqrt{2}} + 1]
And, on the ball : 
  • Weight of the ball mg acts vertically downwards
  • Centrepetal force mw2l acts radially inward
  • Tension acts along the string of pendulum.
Now, \tan 30^{o} = \frac{m \omega ^{2} l}{mg} = \frac{\omega^{2}l}{g}
Or, \omega^{2} = \frac{gtan30^{o}}{l} = gtan30^{o} \div R[ \frac{1}{ \sqrt{2}} + 1]
So the required angular velocity, \omega = \sqrt{gtan30^{o} \div R[ \frac{1}{ \sqrt{2}} + 1]}
THANKS
4 years ago
Vaibhavi
12 Points
							The         answer         is          given                             [2g/3√3R]^1/2         ..
						
4 years ago
Shaswata Biswas
132 Points
							
 
Your answer is correct. 
The ball suspended with a thread is scted upon by two forces : its weight mg, and tension in the string T. The resultant of these two forces produces the necessary centrepetal force along the horizontal so as to make the ball move along a cirular path of radius l (say).
Then, l = R + R.sin30 = \frac{R}{ 2} + R = \frac{3R}{2}
And, on the ball : 
  • Weight of the ball mg acts vertically downwards
  • Centrepetal force mw2l acts radially inward
  • Tension acts along the string of pendulum.
Now, \tan 30^{o} = \frac{m \omega ^{2} l}{mg} = \frac{\omega^{2}l}{g}
Or, \omega^{2} = \frac{gtan30^{o}}{l} = gtan30^{o} \div \frac{3R}{ 2} = \frac{2g}{3 \sqrt{3} R}
So the required angular velocity, 
\omega = \sqrt{ \frac{2g}{3 \sqrt{3} R}}
Identify the mistake I've done before and forgive me for that.
THANKS
4 years ago
Think You Can Provide A Better Answer ?
Answer & Earn Cool Goodies


Course Features

  • 731 Video Lectures
  • Revision Notes
  • Previous Year Papers
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Test paper with Video Solution


Course Features

  • 18 Video Lectures
  • Revision Notes
  • Test paper with Video Solution
  • Mind Map
  • Study Planner
  • NCERT Solutions
  • Discussion Forum
  • Previous Year Exam Questions


Ask Experts

Have any Question? Ask Experts

Post Question

 
 
Answer ‘n’ Earn
Attractive Gift
Vouchers
To Win!!! Click Here for details