Flag General Physics> Monent of inertia...
question mark

thanks for theanswer of my post(on 3/9/2010).The question was:MI of a ring is mr^2.If we treat rings as elementsof a disc as well as of a hemisphere,then MI of a disc and of hemisphere should be same(becoz mass as well as perp. distance of every correspondingring in both from the axiswill be same,but actually not. What is wrong in the concept?(here axis is the axis passing through centre and perp. to plane in both cases)but if we donot use the concept : MI= ∫ dm.r^2 but simply see the relative positions of rings in disc and hemisphere(as someone has opened the disc to form a hemisphere),then what is wrong in that?MI(of both)=∑m.r^2 m=mass of every ring = same in both casesr=perp. distance of every ring from axis=same in both cases.

neeru . , 14 Years ago
Grade 11
anser 1 Answers
Badiuddin askIITians.ismu Expert

Last Activity: 14 Years ago

Dear neeru

In case of hemisphere you can use this concept because mass distribution will not be same throght out its radius.

in case of disk you will get uniform mass distribution  through out its area.

but if you will deal hemisphere as a disk then as you move away from the rotation axis then for same dr distance you will get more mass because hemisphere surface become more and more verticle . (mass distribution is not same in this case).

Please feel free to post as many doubts on our discussion forum as you can.
If you find any question Difficult to understand - post it here and we will get you
the answer and detailed  solution very  quickly.

 We are all IITians and here to help you in your IIT JEE preparation.

All the best.
 
Regards,
Askiitians Experts
Badiuddin

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...