How does capacitive and inductive reactance change with applied voltage

How does capacitive and inductive reactance change with applied voltage


1 Answers

25757 Points
5 years ago

The purpose of a capacitor is to store energy in the form of an electrical charge, on its plates. When a capacitor is connected across a DC supply voltage it charges up to the value of the applied voltage at a rate determined by its time constant.

A capacitor will maintain or hold this charge indefinitely as long as the supply voltage is present. During this charging process, a charging current, i flows into the capacitor opposed by any changes to the voltage at a rate which is equal to the rate of change of the electrical charge on the plates. A capacitor therefore has an opposition to current flowing onto its plates.

The relationship between this charging current and the rate at which the capacitors supply voltage changes can be defined mathematically as: i = C(dv/dt), where C is the capacitance value of the capacitor in farads and dv/dt is the rate of change of the supply voltage with respect to time. Once it is “fully-charged” the capacitor blocks the flow of any more electrons onto its plates as they have become saturated and the capacitor now acts like a temporary storage device.

A pure capacitor will maintain this charge indefinitely on its plates even if the DC supply voltage is removed. However, in a sinusoidal voltage circuit which contains “AC Capacitance”, the capacitor will alternately charge and discharge at a rate determined by the frequency of the supply. Then capacitors in AC circuits are constantly charging and discharging respectively.

When an alternating sinusoidal voltage is applied to the plates of an AC capacitor, the capacitor is charged firstly in one direction and then in the opposite direction changing polarity at the same rate as the AC supply voltage. This instantaneous change in voltage across the capacitor is opposed by the fact that it takes a certain amount of time to deposit (or release) this charge onto the plates and is given by V = Q/C

Think You Can Provide A Better Answer ?