Kevin Nash
Last Activity: 10 Years ago
Sol. γ = 1.5, T = 300 k, V = 1Lv = 1/2l
(a) The process is adiabatic as it is sudden,
P base 1 V base 1^γ = P base 2 V base 2^γ ⇒ P base 1 (V base 0)^γ = P base 2 (V base 0/2)^γ ⇒ P base 2 = P base 1 (1/1/2)^1.5 = P base 1 (2)^1.5 ⇒ P base 2/P base 1 = 2^1.5 = 2√2
(b) P base 1 = 100 KPa = 10^5 Pa W = nR/γ – 1[T base 1 – T base 2]
T base 1 V base 1^γ-1 = P base 2/V base 2^γ-1 ⇒ 300 * (1)^1.5-1 = T base 2 (0.5)^1.5-1 ⇒ 300 * 1 T base 2 √0.5
T base 2 = 300 * √1/0.5 = 300 √2 K
P base 1 V base 1 = nRT base 1 ⇒ n = P base 1 V base 1/RT base 1 = 10^5 * 10^-3/R * 300 = 1/3R (V in m^3)
W = nR/γ – 1[T base 1 – T base 2] = 1R/3R(1.5 - 1) [300 - 300√2] = 300/3 * 0.5(1 - √2) = -82.8 J = - 82 J.
(c) Internal Energy,
dQ = 0, ⇒ du = – dw = –(–82.8)J = 82.8 J ≈ 82 J.
(d) Final Temp = 300 √2 = 300 × 1.414 × 100 = 424.2 k ≈ 424 k.
(e) The pressure is kept constant. ∴ The process is isobaric.
Work done = nRdT = 1/3R * R * (300 – 300 √2) Final Temp = 300 K
= - 1/3 * 300 (0.414 = - 41.4 J. Initial Temp = 300 √2
(f) Initial volume ⇒ V base 1/T base 1 = V base 1’/T base 1’ = V base 1’ = V base 1/T base 1 * T’ base 1 = 1/2 * 300 * √2 * 300 = 1/2√2 L.
Final volume = 1L
Work done in isothermal = nRT In V base 2/V base 1
= 1/3R * R * 300 In(1/1/2√2) = 100 * In (2√2) = 100 * 1.039 = 103
(g) Net work done = W base A + W base B + W base C = - 82 – 41.4 + 103 = - 20.4 J.