Flag Discuss with Askiitians Tutors> the greatest value of the function f(x)=s...
question mark

the greatest value of the function f(x)=sin2x/sin(2x+pi/4) in the interval [0,pi/4] is
aans is root 2 plsssss explain

moidin afsan , 10 Years ago
Grade 11
anser 2 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
f(x) = \frac{sin2x}{sin(2x+\frac{\pi }{4})}
f(x) = \frac{sin2x}{sin(2x).cos(\frac{\pi }{4})+cos(2x).sin(\frac{\pi }{4})}
f(x) = \frac{\sqrt{2}sin2x}{sin(2x)+cos(2x)}
f'(x) = \sqrt{2}\frac{(sin2x+cos2x).(2cos2x)-sin2x(2cos2x-2sin2x)}{(sin(2x)+cos(2x))^{2}}f'(x) = \frac{2\sqrt{2}}{(sin(2x)+cos(2x))^{2}}> 0
=> f(x) is always increasing. So maxima of f(x) will be at x = pi/4.
f(\frac{\pi }{4}) = \frac{sin2.\frac{\pi }{4}}{sin(2.\frac{\pi }{4}+\frac{\pi }{4})}
f(\frac{\pi }{4}) = \frac{1}{\frac{1}{\sqrt{2}}} = \sqrt{2}
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty

moidin afsan

Last Activity: 10 Years ago

thank uuuuuuuuuuu

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free