Flag Differential Calculus> y= cos^-1(2x + 3 sqrt(1-x^2) / sqrt(13)) ...
question mark

y=cos^-1(2x + 3 sqrt(1-x^2) / sqrt(13)) find dy/dx

taniska , 10 Years ago
Grade 12
anser 2 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:

Hello Student,
Please find answer to your question

y = cos^{-1}(\frac{2x+3\sqrt{1-x^{2}}}{\sqrt{13}})
Apply the chain rule
\frac{dy}{dx} = \frac{d(cos^{-1}u)}{dx}.\frac{du}{dx}
u = \frac{2x+3\sqrt{1-x^{2}}}{\sqrt{13}}
u^{2} = \frac{4x^2+9(1-x^{2})+12x\sqrt{1-x^{2}}}{13}
u^{2} = \frac{9-5x^{2}+12x\sqrt{1-x^{2}}}{13}
1-u^{2} = 1-\frac{9-5x^{2}+12x\sqrt{1-x^{2}}}{13}
1-u^{2} = \frac{4+5x^{2}-12x\sqrt{1-x^{2}}}{13}

\frac{du}{dx} = \frac{2+3.\frac{-x}{\sqrt{1-x^{2}}}}{\sqrt{13}}
\frac{du}{dx} = \frac{2\sqrt{1-x^{2}}-3x}{\sqrt{13(1-x^{2})}}
\frac{dy}{dx} = \frac{d(cos^{-1}u)}{dx}.\frac{du}{dx}
\frac{dy}{dx} = \frac{-1}{\sqrt{1-u^{2}}}.\frac{du}{dx}
\frac{dy}{dx} = \frac{-\sqrt{13}}{\sqrt{4+5x^{2}-12x\sqrt{1-x^{2}}}}.\frac{du}{dx}
\frac{dy}{dx} = \frac{-\sqrt{13}}{\sqrt{4+5x^{2}-12x\sqrt{1-x^{2}}}}.\frac{2\sqrt{1-x^{2}}-3x}{\sqrt{13(1-x^{2})}}
\frac{dy}{dx} = \frac{3x-2\sqrt{1-x^{2}}}{\sqrt{4+5x^{2}-12x\sqrt{1-x^{2}}}}.\frac{1}{\sqrt{1-x^{2}}}
\frac{dy}{dx} = \frac{3x-2\sqrt{1-x^{2}}}{\sqrt{(3x-2\sqrt{1-x^{2}})^{2}}}.\frac{1}{\sqrt{1-x^{2}}}\frac{dy}{dx} = \frac{3x-2\sqrt{1-x^{2}}}{|(3x-2\sqrt{1-x^{2}})|}.\frac{1}{\sqrt{1-x^{2}}}
\frac{dy}{dx} = \frac{\pm 1}{\sqrt{1-x^{2}}}

Zaid

Last Activity: 7 Years ago

Above answer is very lengthy ..
I can tell u the easiest method
y=cos^-1(2/sqrt13 (x) - 13/sqrt13  sqrt(1-x^2)
Let cosA=2/sqrt13 , cosB=x
      SinA =3/sqrt13 , sinB= sqrt(1-x^2)
Therefore,
y= cos^-1(cosAcosB-sinAsinB)
   = cos^-1[cos(A+B)]
   = A+B
   = sin^-1(3/sqrt13) + cos^-1(x)
   = 0 + ( - 1/sqrt(1-x^2) )
   = -1/sqrt(1-x^2)

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free