Flag Differential Calculus> Solve the differebtail equation of (x-y)^...
question mark

Solve the differebtail equation of(x-y)^2 dx + 2xy dy =0

Sonali , 5 Years ago
Grade 12th pass
anser 1 Answers
Vinod Ramakrishnan Eswaran

Last Activity: 5 Years ago

They have given the equation as (x-y)2dx+2xydy=0
Divide with x2dx on both sides we get
\frac{(x-y)^{2}}{x^{2}}+2\frac{y}{x}\frac{dy}{dx}=0
=>(1-\frac{y}{x})^{2}+2\frac{y}{x}\frac{dy}{dx}=0
 
Now substitute y/x as v
=> y=vx
Differentiating wrt x on both sides we get 
dy/dx=v+xdv/dx      (uv rule)
Substituting in earlier equation we get
(1-v)^{2}+2v(v+x\frac{dv}{dx})=0
1-2v+3v^{2}=-2vx\frac{dv}{dx}
Arranging them homogeneously we get
\frac{dx}{x}=\frac{-2vdv}{1-2v+3v^{2}}
Integrating on both sides we get
\int \frac{dx}{x}=\int \frac{-2vdv}{1-2v+3v^{2}}+c         (where c is integration constant)
 
log x=\frac{-1}{3}\int \frac{6vdv}{1-2v+3v^{2}}+c
log x=\frac{-1}{3}\int \frac{(6v-2)dv}{1-2v+3v^{2}}+\frac{-1}{3}\int \frac{2dv}{1-2v+3v^{2}}+c
 
log x=\frac{-1}{3}log(1-2v+3v^{2})+\frac{-2}{9}\int \frac{dv}{v^{2}-\frac{2v}{3}+\frac{1}{3}}+c
log x=\frac{-1}{3}log(1-2v+3v^{2})+\frac{-2}{9}\int \frac{dv}{(v^{2}-\frac{2v}{3}+\frac{1}{9})+(\frac{1}{3}-\frac{1}{9})}+c
log x=\frac{-1}{3}log(1-2v+3v^{2})+\frac{-2}{9}\int \frac{dv}{(v-\frac{1}{3})^{2}+(\frac{2}{9})}+c
log x=\frac{-1}{3}log(1-2v+3v^{2})+\frac{-2}{9}*\frac{3}{\sqrt{2}}*\tan(\frac{3v-1}{\sqrt{2}}) +c
Substituting v=y/x we get the required answer
log x=\frac{-1}{3}log(1-2\frac{y}{x}+3(\frac{y}{x})^{2})+\frac{-\sqrt{2}}{3}*\tan(\frac{3\frac{y}{x}-1}{\sqrt{2}}) +c
 
 

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...