Flag Differential Calculus> Question is attached in image. Sir explai...
question mark

Question is attached in image. Sir explain this solution. In = dn-1/dxn-1 [xn-1 + nxn-1 log x ] In = (n-1) dn-2 / dx n-2 xn-2 + n dn-1 / dxn-1 (xn-1 logx)
In =(n-1 ) ! + nIn-1
In – nIn-1 =(n-1)! Proved

milind , 10 Years ago
Grade 12
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Hello student,
Please find answer to your question
I_{n} = \frac{d^{n}}{dx^{n}}(x^{n}log(x))
I_{n} = \frac{d^{n-1}}{dx^{n-1}}(x^{n}.\frac{1}{x} + log(x).nx^{n-1})
I_{n} = \frac{d^{n-1}}{dx^{n-1}}(x^{n-1} + n.x^{n-1}log(x))
I_{n} = \frac{d^{n-2}}{dx^{n-2}}((n-1)x^{n-2} + n(x^{n-1}.\frac{1}{x} + log(x).(n-1)x^{n-2})
I_{n} = (n-1)\frac{d^{n-2}}{dx^{n-2}}(x^{n-2}) + n\frac{d^{n-2}}{dx^{n-2}}(x^{n-2} + .(n-1)x^{n-2}log(x))
I_{n} = (n-1)! + n\frac{d^{n-2}}{dx^{n-2}}(x^{n-2} + .(n-1)x^{n-2}log(x))…..(1)
I_{n-1} = \frac{d^{n-1}}{dx^{n-1}}(x^{n-1}log(x))
I_{n-1} = \frac{d^{n-2}}{dx^{n-2}}(x^{n-1}.\frac{1}{x} + log(x).(n-1)x^{n-2})
I_{n-1} = \frac{d^{n-2}}{dx^{n-2}}(x^{n-2} + (n-1)x^{n-2}log(x))
Put this in equation (1), we have
I_{n} = (n-1)! + nI_{n-1}
I_{n} - nI_{n-1} = (n-1)!

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments