Flag Differential Calculus> Q. ​IF TWO ROOTS OF THE EQUATION- (p-1)(x...
question mark

Q. ​IF TWO ROOTS OF THE EQUATION- (p-1)(x2 + x + 1)2 – (p+1)( x4 + x2 +1) = 0 ARE REAL AND DISTINCT AND f(x) = 1-x/1+x , THEN f(f(x)) + f(f(1/x)) IS EQUAL TO-p -p 2p -2p

Bharat Makkar , 10 Years ago
Grade Select Grade
anser 2 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
Hello Student,
Please find answer to your question below

f(x) = \frac{1-x}{1+x}
f(f(x)) = \frac{1-f(x)}{1+f(x)}
f(f(x)) = \frac{1-\frac{1-x}{1+x}}{1+\frac{1-x}{1+x}}
f(f(x)) = \frac{2x}{2}
f(f(x)) = x
f(f(\frac{1}{x})) = \frac{1-f(\frac{1}{x})}{1+f(\frac{1}{x})}
f(f(\frac{1}{x})) = \frac{1-\frac{x-1}{x+1}}{1+\frac{x-1}{x+1}}
f(f(\frac{1}{x})) = \frac{2}{2x}
f(f(\frac{1}{x})) = \frac{1}{x}
f(f(x)) + f(f(\frac{1}{x})) = x + \frac{1}{x}
(p-1)(x^2+x+1)^2 = (p+1)(x^4+x^2+1)
(p-1)(x^4+x^2+1+2x^3+2x+2x^2) = (p+1)(x^4+x^2+1)
2(p-1)(x^3+x+x^2) = 2(x^4+x^2+1)
(p-1)x(x^2+x+1) = (x^4+x^2+1)
p-1 = \frac{(x^4+x^2+1)}{(x^3+x^2+x)}
p = \frac{(x^4+x^2+1)}{(x^3+x^2+x)}+1
p = \frac{(x^4+x^3+2x^2+x+1)}{(x^3+x^2+x)}
p = \frac{(x^4+x^3+x^2+x^2+x+1)}{(x^3+x^2+x)}
p = \frac{x^2(x^2+x+1)+x^2+x+1)}{x(x^2+x+1)}
p = x+\frac{1}{x}
Option(1) is correct.

Bharat Makkar

Last Activity: 10 Years ago

THANK YOU SIR.....

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...