Flag Differential Calculus> MODIFIED AND CORRECT QUESTION Find doamin...
question mark

MODIFIED AND CORRECT QUESTION
Find doamin of f(x)
x IS IN (0,pi)

g(x)=|sinx|+sinx

h(x)=sinx+cosx ,x is in b/w 0 to pi
f(x)=(logh(x) g(x))1/2
log is in square root and h(x) is in base
answer is pi/6,pi/2

thanks

vineet nimesh , 10 Years ago
Grade
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
g(x) = |sinx| + sinx
g(x) = 2sinx, 0\leq x\leq \pi
h(x) = sinx+cosx = \sqrt{2}sin(x+\frac{\pi }{4})
f(x) = \sqrt{log_{h(x)}(g(x))}
f(x) = \sqrt{log_{2sinx}(\sqrt{2}sin(x+\frac{\pi }{4}))}
1st Part:
\sqrt{2}sin(x+\frac{\pi }{4}) > 0
\Rightarrow 0< x< \frac{3\pi }{4}
2nd Part:
2sinx > 0
\Rightarrow 0<x<\pi
2sinx \neq 1
\Rightarrow x\neq \frac{\pi }{6}
3rd Part:
log_{2sinx}(\sqrt{2}sin(x+\frac{\pi }{4}))\geq 0
Lets assume
0<2sinx<1
\Rightarrow 0<x<\frac{\pi }{6}, \frac{5\pi }{6}<x<\pi
\sqrt{2}sin(x+\frac{\pi }{4})\leq 1
sin(x+\frac{\pi }{4})\leq \frac{1}{\sqrt{2}}
\Rightarrow \frac{\pi }{2}< x\leq \pi
Final sol. for this part:
\frac{5\pi }{6}<x< \pi
Lets assume
1<2sinx<2
\Rightarrow \frac{\pi }{6}< x < \frac{5\pi}{6}
\sqrt{2}sin(x+\frac{\pi }{4})\geq 1
sin(x+\frac{\pi }{4})\geq \frac{1}{\sqrt{2}}
0\leq x\leq \frac{\pi }{2}
Final sol. of this part:
\frac{\pi }{6}<x\leq \frac{\pi }{2}
Final Solution:
x\in (\frac{\pi }{6}, \frac{\pi }{2}]
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free