Flag Differential Calculus> limit x tends to 0 then what is the value...
question mark

limit x tends to 0 then what is the value of 1-cosmx/1-cosnx=

DEEPTHI JANGA , 9 Years ago
Grade 11
anser 4 Answers
PASUPULETI GURU MAHESH

Last Activity: 9 Years ago

limit x tends to 0   1-cosmx/1-cosnx= now rationalise nx))/(1-cos2nx)(1+cosnx)= ((1-cosmx)x1+cosnx/)x(1+cosnx(1-cosmx/1-cos
                                                          =(1+cosnx-cosmx.cosnx-cosmx)/(1-cos2nx)
                                                         =((1+cosnx).(1-cosmx))/(1-cos2nx)
                                                         =(1+cosnx)/(1-cos2nx)×(1-cosmx)
then solve that you get zerothere fore limit x tends to 0 then what is the value of 1-cosmx/1-cosnx=0

DEEPTHI JANGA

Last Activity: 9 Years ago

(1-cosmx/1-cosnx)x(1+cosnx/1+cosnx)= ((1-cosmx)x(1+cosnx))/(1-cos2nx)1-cosmx/1-cosnx= now rationalise tends to 0   limit x
                                                          =(1+cosnx-cosmx.cosnx-cosmx)/(1-cos2nx)
                                                         =((1+cosnx).(1-cosmx))/(1-cos2nx)
                                                         =(1+cosnx)/(1-cos2nx)×(1-cosmx)
then solve that you get zerothere fore limit x tends to 0 then what is the value of 1-cosmx/1-cosnx=0 sorry but the options are a.mn  b.m/n   c.m2/n2    d.m-n       

SREEKANTH

Last Activity: 8 Years ago

limit x tends to zero (1-cosmx)/(1-cosnx) by dividing the euation with mx and multiply with nx then you will get =limit x tends to zero (1-cosmx)/(1-cos nx)*(nx)/(mx) on re arranging we will get
              =((mx)(1-cosmx)/(mx)/(nx)(1-cos nx)/(nx)  but we know that 1-cos x=2sin^2 x/2
              =(nx/mx)(2(2sin^2 (mx)/2)/(mx)/2)/2(2sin^2 (nx)/2)/(nx)/2)
              =(n/m)(16/16)(n/m) limit x tends to zero ((sin (mx)/2)/(mx)/2))sin (mx)/2)/(mx)/2))/sin^2 (nx)/2)/(nx)/2)sin^2 (nx)/2)/(nx)/2)
              =(n/m)^2
 so the answer is (n/m)^2

Ajay

Last Activity: 8 Years ago

Since this of form 0/0 use L Hospital rule. Differentiating numerator and denominator it becomes
 (m sin  mx)/ (n sin nx)
This is again of form 0/0 , hence differentiating again
 (m2 cos mx)/ (n2 cos nx)
as x tends to 0,  both cos mx and con nx tends to 1 hence m2/n should be correct answer

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...