Flag Integral Calculus> lim x->0 x([1/x]+[2/x]...+[k/x]) by using...
question mark

lim x->0 x([1/x]+[2/x]...+[k/x])
by using sandwich theorem, i am getting k/2 on left and k^2/2 on right. can someone please help me with this.
thank you so much *

shiya , 6 Years ago
Grade 12th pass
anser 1 Answers
Samyak Jain

Last Activity: 6 Years ago

According to me, both mentioned values are wrong.
Greatest integer is always less than or equal to the number.
x – 1  <  [x]  \leq  x
Now, limx\rightarrow0 x([1/x] + [2/x] + … + [k/x]) can be written as limx\rightarrow\infty ([1x] + [2x] + … + [kx]) / x
(x –1) + (2x –1) + … + (kx –1) < ([1x] + [2x] + … + [kx]) \leq x + 2x + … + kx
\Rightarrow {k(k + 1)/2}/x  –  k  <  ([1x] + [2x] + … + [kx])  \leq  {k(k + 1)/2}/x
Divide throughout by x and take limit as x\rightarrow\infty.
\Rightarrow limx\rightarrow\infty {k(k + 1)/2}/x  –  k  <  limx\rightarrow\infty ([1x] + [2x] + … + [kx])  \leq  limx\rightarrow\infty {k(k + 1)/2}/x
As limx\rightarrow\infty {k(k + 1)/2}/x  –  k  =  limx\rightarrow\infty {k(k + 1)/2}/x  =  k(k+1)/2,
by sandwich theorem, limx\rightarrow\infty ([1x] + [2x] + … + [kx]) = k(k+1)/2
i.e.  limx\rightarrow0 x([1/x] + [2/x] + … + [k/x])  =  k(k+1)/2

Provide a better Answer & Earn Cool Goodies

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free