Flag Differential Calculus> let function f(x) be such that f(x+y) = f...
question mark

let function f(x) be such that
f(x+y) = f(x)f(y) for all x , y .
Show that f ‘ (x) exists and f ‘ (x) = f(x)

Drake , 10 Years ago
Grade 12
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago


Hello student,
Please find answer to your question
f(x+y) = f(x)f(y)
f'(x) = \lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}
f'(x) = \lim_{h\rightarrow 0}\frac{f(x)f(h)-f(x)}{h}
f'(x) = \lim_{h\rightarrow 0}f(x).\frac{f(h)-1}{h}
f'(x) = f(x).f'(0)
\frac{df(x)}{dx} = f(x).f'(0)
\frac{df(x)}{f(x)} = f'(0).dx
\int \frac{df(x)}{f(x)} = \int f'(0).dx
ln(f(x)) = f'(0)x+c
f(x+y) = f(x)f(y)
x=0, y=0
f(0+0) = f(0)f(0)
f(0) = 1
ln(f(0)) = f'(0).0+c
c = 0
ln(f(x)) = f'(0)x
f(x) = e^{f'(0)x}
f'(x) = e^{f'(0)x}.f'(0)
If
f'(0) = 1
f'(x) = f(x)
Thanks & Regards
Jitender Singh
IIT Delhi
askIITians Faculty

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments