 ×     #### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```
Let f[x]=| x-pie/2|^3 +sin^2x then find the value of the fiven function f’’[pie/2]

```
7 months ago Saurabh Koranglekar
10233 Points
```							Dear studentPlease ask complete question in standard notation or attach the image of the questionRegards
```
7 months ago
```							Dear student Question is not clear Please attach an image, We will happy to  help you Good LuckCheers
```
7 months ago
```							dear meghana, we see that f(x)= g(x) + h(x) where g(x)= |x – pi/2|^3 and h(x)= sin^2x so, f”(x)= g”(x) + h”(x)now, h’(x)= 2sinxcosx= sin2x so h”(x)= 2cos2x so that h”(pi/2)= 2cospi= – 2now, to find g”(x) at pi/2, we first find RHL and then LHL: RHL= Lt x tends to pi/2+ [g’(x) – g’(pi/2)]/(x – pi/2) and LHL= Lt x tends to pi/2- [g’(x) – g’(pi/2)]/(x – pi/2) now, g’(pi/2+)= Lt x tends to pi/2+ [g(x) – g(pi/2)]/(x – pi/2)= Lt x tends to pi/2+ (x – pi/2)^3/(x – pi/2)= Lt x tends to pi/2+ (x – pi/2)^2= 0similarly g’(pi/2-)= Lt x tends to pi/2– [g(x) – g(pi/2)]/(x – pi/2)= Lt x tends to pi/2- (pi/2 – x)^3/(x – pi/2)= Lt x tends to pi/2- – (x – pi/2)^2= 0hence, g’(pi/2)= 0 since g’(pi/2+)= g’(pi/2-)= 0so, RHL=  Lt x tends to pi/2+ [g’(x) – 0]/(x – pi/2)=  Lt x tends to pi/2+ g’(x)/(x – pi/2)but for x greater than pi/2, g’(x)=  Lt h tends to 0 [g(x+h) – g(x)]/h= Lt h tends to 0 [(x+h – pi/2)^3 – (x – pi/2)^3]/h= 3(x – pi/2)^2so RHL= Lt x tends to pi/2+ g’(x)/(x – pi/2)= Lt x tends to pi/2+ 3(x – pi/2)^2/(x – pi/2)= 0similarly LHL= Lt x tends to pi/2- g’(x)/(x – pi/2)for x less than pi/2, g’(x)= Lt h tends to 0 [g(x+h) – g(x)]/h= Lt h tends to 0 [(pi/2 – x – h)^3 – (pi/2 – x)^3]/h= 3(pi/2 – x)^2*( – 1)= – 3(x – pi/2)^2so, LHL= Lt x tends to pi/2- g’(x)/(x – pi/2)= LHL= Lt x tends to pi/2- – 3(x – pi/2)^2/(x – pi/2)= 0since LHL= RHL= 0, we have g”(pi/2)= 0hence, f”(pi/2)= g”(pi/2) + h”(pi/2)= 0 + ( – 2)= – 2KINDLY APPROVE :))
```
7 months ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Differential Calculus

View all Questions »  ### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution  ### Course Features

• 51 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions