Flag Differential Calculus> Image attached ….....
question mark

Image attached ….....

milind , 10 Years ago
Grade 12
anser 2 Answers
Jitender Singh

Last Activity: 10 Years ago

Hello student,
Please find answer to your question
I_{n} = \frac{d^{n}}{dx^{n}}(x^{n}log(x))
I_{1} = \frac{d}{dx}(xlog(x))
I_{1} = 1 + log(x)
I_{2} = \frac{d^{2}}{dx^{2}}(x^{2}log(x))
I_{2} = 3 + 2log(x)
I_{3} = \frac{d^{3}}{dx^{3}}(x^{3}log(x))
I_{3} = 11 + 6log(x)
I_{4} = \frac{d^{4}}{dx^{4}}(x^{4}log(x))
I_{4} = 50 + 24log(x)
I_{5} = \frac{d^{5}}{dx^{5}}(x^{5}log(x))
I_{5} = 274 + 120log(x)
I_{5}-5I_{4} = 24 = 4! = (5-1)!
I_{4}-4I_{3} = 6 = 3! = (4-1)!
I_{3}-3I_{2} = 2 = 2! = (3-1)!
Similarly, you can prove for n,
I_{n}-nI_{n-1} = (n-1)!

milind

Last Activity: 10 Years ago

Sir explain this solution.                              In = dn-1/dxn-1 [xn-1  + nxn-1 log x ]                In = (n-1) dn-2 / dx n-2 xn-2 + n dn-1 / dxn-1 (xn-1 logx) 
In =(n-1 ) ! + nIn-1 
In – nIn-1 =(n-1)! Proved  

Provide a better Answer & Earn Cool Goodies

Enter text here...
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments


Ask a Doubt

Get your questions answered by the expert for free

Enter text here...