Flag Differential Calculus> Image attached …........
question mark

Image attached ….....

milind , 11 Years ago
Grade 12
anser 2 Answers
Jitender Singh
Hello student,
Please find answer to your question
I_{n} = \frac{d^{n}}{dx^{n}}(x^{n}log(x))
I_{1} = \frac{d}{dx}(xlog(x))
I_{1} = 1 + log(x)
I_{2} = \frac{d^{2}}{dx^{2}}(x^{2}log(x))
I_{2} = 3 + 2log(x)
I_{3} = \frac{d^{3}}{dx^{3}}(x^{3}log(x))
I_{3} = 11 + 6log(x)
I_{4} = \frac{d^{4}}{dx^{4}}(x^{4}log(x))
I_{4} = 50 + 24log(x)
I_{5} = \frac{d^{5}}{dx^{5}}(x^{5}log(x))
I_{5} = 274 + 120log(x)
I_{5}-5I_{4} = 24 = 4! = (5-1)!
I_{4}-4I_{3} = 6 = 3! = (4-1)!
I_{3}-3I_{2} = 2 = 2! = (3-1)!
Similarly, you can prove for n,
I_{n}-nI_{n-1} = (n-1)!
ApprovedApproved
Last Activity: 11 Years ago
milind
Sir explain this solution.                              In = dn-1/dxn-1 [xn-1  + nxn-1 log x ]                In = (n-1) dn-2 / dx n-2 xn-2 + n dn-1 / dxn-1 (xn-1 logx) 
In =(n-1 ) ! + nIn-1 
In – nIn-1 =(n-1)! Proved  
Last Activity: 11 Years ago
star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments