Flag Differential Calculus> How d n /dx n becomes d n-1 /dx n-1 …...p...
question mark

How dn/dxn becomes dn-1/dxn-1 …...please explain

milind , 10 Years ago
Grade 12
anser 2 Answers
Jitender Singh

Last Activity: 10 Years ago

Hello student,
Please find answer to your question
y = f(x)
\frac{d^{n}}{dx^{n}}(f(x)) = \frac{d^{n-1}}{dx^{n-1}}(f'(x)) = \frac{d^{n-2}}{dx^{n-2}}(f''(x)) = ...........
For example,
f(x) = (x+1)^{4}
\frac{d^{4}}{dx^{4}}(x+1)^{4} = 4!
Apply this
\frac{d^{n}}{dx^{n}}(f(x)) = \frac{d^{n-1}}{dx^{n-1}}(f'(x)) = \frac{d^{n-2}}{dx^{n-2}}(f''(x)) = ...........
\frac{d^{4}}{dx^{4}}(x+1)^{4} = \frac{d^{3}}{dx^{3}}(4(x+1)^{3}) = \frac{d^{2}}{dx^{2}}(4.3(x+1)^{2}) = \frac{d}{dx}(4.3.2.(x+1)) = 4!

f(x) = x^{n}log(x)
\frac{d^{n}}{dx^{n}}(f(x)) = \frac{d^{n-1}}{dx^{n-1}}(f'(x))
I_{n} = \frac{d^{n-1}}{dx^{n-1}}(x^{n}log(x))'
I_{n} = \frac{d^{n-1}}{dx^{n-1}}(x^{n}.\frac{1}{x}+log(x).nx^{n-1})
I_{n} = \frac{d^{n-1}}{dx^{n-1}}(x^{n-1}+nx^{n-1}log(x))

milind

Last Activity: 10 Years ago

Thanx …........you are awesome sir …....you helped me whenever I required …..this website is awesome ….....

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments