Y RAJYALAKSHMI
Last Activity: 10 Years ago
Let f(x) is define over the interval [0, a], then the odd extenstion of f(x) over the interval [-a, a] is defined as
f(x) = – f(–x); –a
= f(x); 0
For the given function f(x) = x2 + x + sinx – cosx + log(1 + |x|) over the interval [0, 1], the odd extension on the interval [–1, 1] is
– [(– x)2 + (– x) + sin(– x) – cos(– x) + log(1 + |x|)]; for –1
= – [x2 – x – sinx – cos x + log(1 + |x|)]
= – x2 + x + sinx + cos x – log(1 + |x|)]