Flag Differential Calculus> Find the limit lim(x->4) [(cosa) x -(sina...
question mark

Find the limit
lim(x->4) [(cosa)x-(sina)x-cos2a)/(x-4)]
0

Lovey , 10 Years ago
Grade 12
anser 1 Answers
Jitender Singh

Last Activity: 10 Years ago

Ans:
Hello Student,
Please find answer to your question below

L = \lim_{x\rightarrow 4}\frac{(cosa)^{x}-(sina)^{x}-cos2a}{x-4}
L = \lim_{x\rightarrow 4}\frac{((cosa)^{x}-(sina)^{x})-(cos^{2}a-sin^{2}a)}{x-4}
L = \lim_{x\rightarrow 4}\frac{((cosa)^{x}-(sina)^{x})-(cos^{2}a-sin^{2}a)(cos^{2}a+sin^{2}a)}{x-4}
L = \lim_{x\rightarrow 4}\frac{((cosa)^{x}-(sina)^{x})-(cos^{4}a-sin^{4}a)}{x-4}
L = \lim_{x\rightarrow 4}\frac{(cos^{4}a)((cosa)^{x-4}-1)-sin^{4}a((sina)^{x-4}-1))}{x-4}
L = \lim_{x\rightarrow 4}\frac{(cos^{4}a)((cosa)^{x-4}-1)}{x-4}-\lim_{x\rightarrow 4}\frac{sin^{4}a((sina)^{x-4}-1)}{x-4}
L = (cos^{4}a).ln(cosa)-sin^{4}a.ln(sina)

star
LIVE ONLINE CLASSES

Prepraring for the competition made easy just by live online class.

tv

Full Live Access

material

Study Material

removal

Live Doubts Solving

assignment

Daily Class Assignments