 ×     #### Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Click to Chat

1800-1023-196

+91-120-4616500

CART 0

• 0

MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping
```
Find the interval for z so that (3-Z)X+ZY+(z2-1)=O is normal to the curve XY=4

```
2 years ago

```							(3-z)x+zy+(2z-1)=0zy=(z-3)x+(1-2z)Y={(z-3)/z}x+(1-2z)/zFrom, Y=mX+cm=(z-3)/z.                         [SLOPE OF NORMAL]............(1)Given curve;xy=4y=4/xdy/dx= -4/x^2.                [SLOPE OF TANGENT TO CURVE]SLOPE OF NORMAL= -1/(dy/dx)=x^2/4.          …...............(2)(1)=(2)z-3)/z=x^2/41-3/z=x^2/43/z=(4-x^2)/4z=12/4-x^2For z to be defined X^2=|= 4x=|= +-2Interval z€R-{+-2}
```
2 years ago
Think You Can Provide A Better Answer ?

## Other Related Questions on Differential Calculus

View all Questions »  ### Course Features

• 731 Video Lectures
• Revision Notes
• Previous Year Papers
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Test paper with Video Solution  ### Course Features

• 51 Video Lectures
• Revision Notes
• Test paper with Video Solution
• Mind Map
• Study Planner
• NCERT Solutions
• Discussion Forum
• Previous Year Exam Questions