Thank you for registering.

One of our academic counsellors will contact you within 1 working day.

Please check your email for login details.
MY CART (5)

Use Coupon: CART20 and get 20% off on all online Study Material

ITEM
DETAILS
MRP
DISCOUNT
FINAL PRICE
Total Price: Rs.

There are no items in this cart.
Continue Shopping

find the diffrentiation of first principal e sinx .cosx.

find the diffrentiation of first principal esinx.cosx.

Grade:12th pass

2 Answers

Saurabh Koranglekar
askIITians Faculty 10341 Points
2 years ago
576-1003_1.PNG
Aditya Gupta
2075 Points
2 years ago
saurabh’s answer is NOT by first principle.
to use the first principle, we consider the ratio:
[esin(x+h).cos(x+h) – esinx.cosx]/h
=[esin(x+h).{cos(x+h) – cosx}+{esin(x+h) – esinx}cosx]/h
=[esin(x+h).{cos(x+h) – cosx}]/h+[{esin(x+h) – esinx}cosx]/h 
now we set h tends to zero
=esin(x+0) Lt{cos(x+h) – cosx}/h + cosx Lt{esin(x+h) – esinx}/h
=esin(x+0) Lt2sin(x+h/2)sin(-h/2)/h + cosx*Lt{esin(x+h) – esinx}/h
=esinx( –sinx)+cosxLt{esin(x+h) – esinx}/h [here we have used the fact that lim x tends to zero sinx/x=1]
now let Lt{esin(x+h) – esinx}/h = m
then m=esinx Lt{esin(x+h) – sinx – 1}/{sin(x+h) – sinx}*Lt{sin(x+h) – sinx}/h
=esinx .1.cosx [here we have put sin(x+h) – sinx=y and then used the fact that lim x tends to zero (e^x-1)/x=1 and that differntiation of sinx is cosx which you can derive by using sina – sinb formula]
so, the final answer is
esinx( –sinx) + cosx*esinx .1.cosx
esinx (cos^2x – sinx)

Think You Can Provide A Better Answer ?

Provide a better Answer & Earn Cool Goodies See our forum point policy

ASK QUESTION

Get your questions answered by the expert for free